Update on Beam Imperfections Studies at PITZ

- Motivation
- Electron beam asymmetry studies
- Electron beam imaging studies
- Photoemission studies
- Conclusions and outlook

M. Krasilnikov DESY-TEMF-Meeting , 24.06.2016

Electron Beam Imperfections at PITZ: Observations

M. Krasilnikov | Update on beam Imperfections studies at PITZ | 24.06.2016 | Page 2

Electron beam asymmetry → Larmor angle experiment: ASTRA "tracking back" towards cathode

Main solenoid calibration: Electron beam imaging studies (Q.Zhao)

<u>Main idea</u>: beam dynamics w/o space charge to confirm RF gun + solenoid electron optics, e.g. the main solenoid calibration:

 $B_{z,main}$ [T]=5.889×10⁻⁴* I_{main} [A]+7.102×10⁻⁵

Tools: grid at the BSA location \rightarrow to be imaged onto the cathode, then electron image at LOW.Scr1,2,3 for various RF peak power level (E_{cath}) by I_{main} tuning.

Grid and laser on VC2.

P_{aun} =3MW (42.5MV/m \rightarrow 4.84MeV/c)

P_{gun} =5MW (54.4MV/m \rightarrow 6.07MeV/c)

E-beam Imaging: Magnification factor and images analysis

M. Krasilnikov | Update on beam Imperfections studies at PITZ | 24.06.2016 | Page 5

Photo emission studies (October-November 2015)

Update on photo emission studies: 90 deg phase

Measured charge for 90deg w.r.t zero-crossing phase (short 2ps FWHM Gaussian pulses, BSA=0.8mm):

- systematically lower than corresponding simulations (especially at QE→SC transition)
- systematically lower than the charge measured at lower phases (30, 49deg) with higher gradients (E_{cath}), but same E_{emission}

M. Krasilnikov | Update on beam Imperfections studies at PITZ | 24.06.2016 | Page 7

Update on photo emission studies: zero-crossing phase

Still not understood: Zero-crossing phase $\leftarrow \rightarrow$ MMMG phase \rightarrow 2-3 deg phase shift between measurements and simulations

cathode laser			delta phi dq/dphi- Gauss.fit		£;4 /
σ _t (ps)	fwhm (ps)	EKIN (EV)	deg	fit-σ _t (ps)	m-ot∕ot
0.85	2	0.55	-1	1.54	1.81
0.85	2.6	1.1	-1.3	1.67	1.96

δE-program at PITZ (new)

Idea: establish δE measurements (best resolution and flexibility) and measure δE for various conditions (temporal profiles, SC effect, etc.)

Motivation from DESY-HH:

• Initial δE for micro-bunching instability studies (M. Dohlus)

Motivation from PITZ:

- · Measurements vs. simulations
- Improve measured σE (projected) understanding
- ?Detailed emission modeling (e.g. zero-crossing phase)

Summary and Conclusions

- > E-beam asymmetry:
 - The experiment on Larmor angle:
 - \rightarrow skew quad (\rightarrow RF) kick at z~0.18m
 - \rightarrow normal quad (\rightarrow solenoid) kick at z~0.34m
- > Beam imaging studies:
 - Main solenoid calibration + RF field dynamics ~> seems to be OK, but still more investigations are to be done
- > Photo emission:
 - Core+halo model of the laser transverse distribution → better agreement in bunch charge vs. laser pulse energy. But not much improved discrepancy in measured-to-simulated phase spaces and optimum machine setup
 - Still to be understood:
 - \rightarrow measured curves Q(E_{laser}) for 90 deg w.r.t. "0"
 - \rightarrow "0"-phase determination
- > δE -program at PITZ

Beam Imperfection Studies project

Photo injector setups for emission studies

Setup	BSA diameter	Laser temporal profile	Laser pulse length FWHM	Gun RF power	Gun RF Phase	E _{cathode} at moment of emission
	(mm)		(ps)	(MW)	(deg)	(MV/m)
1	1.2	Gaussian	2.7	4.000	MMMG	29
2	1.2	Gaussian	2.7	7.750	MMMG	45
3	1.2	Flattop	17.0	4.000	MMMG	29
4	1.2	Flattop	17.0	7.750	MMMG	45
5	0.8	Gaussian	3.5	1.500	90	29
6	0.8	Gaussian	3.5	3.375	90	43.5
7	0.8	Gaussian	3.5	6.000	90	58
8	0.8	Gaussian	2.0	6.000	90	58
9	0.8	Gaussian	2.0	6.000	49	43.5
10	0.8	Gaussian	2.0	6.000	30	29

Studies on charge production from Cs_2 Te photocathodes in the PITZ L-band normal conducting radio frequency photo injector

C. Hernandez-Garcia, M. Kraslinikov, G. Asova, M. Bakr, P. Boonpornprasert, J. Good, M. Gross,

H. Huck, I. Isaev, D. Kalantaryan, M. Khojoyan, G. Kourkafas, O. Lishilin, D. Malyutin, D. Melkumyan,

A. Oppelt, M. Otevrel, G. Pathak, Y. Renier, T. Rublack, F. Stephan, G. Vashchenko, and Q. Zhao

