Eigenmode Calculations for the PETRA III 7-Cell 500 MHz Cavity

W. Ackermann, H. De Gersem, C. Liu, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt

Outline

- Motivation
- Computational Model
 - Drawings and geometry information
 - Numerical problem formulation
- Simulation results
 - Mode pattern and characteristic data for a tuned and untuned structure
- Summary / Outlook

Outline

Motivation

- Computational Model
 - Drawings and geometry information
 - Numerical problem formulation
- Simulation results
 - Mode pattern and characteristic data for a tuned and untuned structure
- Summary / Outlook

Motivation

- PETRA Cavities
 - Photographs

From time to time automatic switch-off of the power supply due to unexpected high fields in the cavity or waveguide system.

Outline

Motivation

Computational Model

- Drawings and geometry information
- Numerical problem formulation
- Simulation results
 - Mode pattern and characteristic data for a tuned and untuned structure
- Summary / Outlook

• PETRA III, 500 MHz, 7-cell Cavity

- Drawings

Courtesy of Kathrin Cottel Michael Ebert Rainer Wanzenberg

= •

PETRA III, 500 MHz, 7-cell Cavity Input Waveguide - Geometry information Cavity Pump Port **Pump Port Tuning Plunger Tuning Plunger**

PETRA, 500 MHz, 7-cell Cavity

- Drawings

• PETRA III, 500 MHz, 7-cell Cavity

- Geometry information (Details of the input coupler)

• PETRA III, 500 MHz, 7-cell Cavity

- Geometry information (Details of the tuning plungers)

PETRA III, 500 MHz, 7-cell Cavity

- Geometry information (Details of the tuning plungers)

• PETRA III, 500 MHz, 7-cell Cavity

- Estimation of resonances (Beschleuniger-Betriebsseminar 2015)

Courtesy of Michael Ebert

Cavity

PETRA III, 500 MHz, 7-cell Cavity

- Numerical problem formulation

Outline

- Motivation
- Computational Model
 - Drawings and geometry information
 - Numerical problem formulation
- Simulation results
 - Mode pattern and characteristic data for a tuned and untuned structure
- Summary / Outlook

Calculated Resonances (first 30 values)

Frequency (Multiple Modes)

Calculated Resonances (first 100 values)

Calculated Resonances (concentration on first 30 values)

TECHNISCHE UNIVERSITÄT DARMSTADT

TECHNISCHE UNIVERSITÄT DARMSTADT

TECHNISCHE UNIVERSITÄT DARMSTADT

TECHNISCHE UNIVERSITÄT DARMSTADT

TECHNISCHE UNIVERSITÄT DARMSTADT

TECHNISCHE UNIVERSITÄT DARMSTADT

UNIVERSITÄT DARMSTADT

TECHNISCHE UNIVERSITÄT DARMSTADT

- Computational Method
 - Finite Element Method

Second-order Nedelec-Elements on curved tetrahedrons

- Closed structure with PEC boundary conditions
- Evaluation on different meshes

- Calculated Resonances
 - Estimation of the relative error with respect to the resonance frequency

Capability to separate modes (mixed polarization observed)

TECHNISCHE UNIVERSITÄT DARMSTADT

Rotation of the Polarization

- Comparison: Tuned and Untuned Structure
 - Evaluation of the longitudinal electric field component along the axis

TECHNISCHE UNIVERSITÄT DARMSTADT

Postprocessing: R / Q (tuned cavity)

R over Q beta=1 (Multiple Modes)

Postprocessing: R / Q (tuned cavity)

Postprocessing: R / Q (untuned cavity)

Postprocessing: Quality Factor (tuned cavity)

Postprocessing : Quality Factor (untuned cavity)

Postprocessing: R / Q (tuned cavity)

Postprocessing: R / Q (untuned cavity)

Outline

- Motivation
- Computational Model
 - Drawings and geometry information
 - Numerical problem formulation
- Simulation results
 - Mode pattern and characteristic data for a tuned and untuned structure

Summary / Outlook

Summary / Outlook

Summary:

- Precise modeling of the PETRA III cavity including pump ports, tuning plunger and input coupler
- Eigenmode analysis performed up to the first sextupole passband (mode pattern, frequency, R/Q, Q via power loss)
- Modes in the second dipole passband possess unexpected high valued for R/Q
- Outlook:
 - Application of the complex eigenvalue solver

