Feasibility Studies on a FLASH II XTCAV

Patrick Krejcik/SLAC

Nils Lockmann, MPY

Feasibility Studies on a FLASH II XTCAV FEL-Seminar, 7.7.2015

HELMHOLTZ ASSOCIATION

Outline

Motivation

- > Background of longitudinal phase-space measurements
- > XTCAV for FLASH II: basic studies
 - X-Band TCAV
 - Lattice and optics
 - Resolution and optics optimization
 - Jitter
- > XTCAV for FLASH II:
 - Bunch simulations and agreement of measurements
 - CSR influence
- Summary and outlook
- > Acknowledgments

Motivation

- > Tendency for shorter FEL x-ray pulses (user)
 - Better time resolution
- Knowledge of temporal x-ray profile
- Conventional streak cameras and photodetectors
 - Response time to slow
- > XTCAV + spectrometer (indirect bunch)
 - Femtosecond regime
 - Single shot
 - Any radiation wavelength
 - No interruption of user operation

Motivation

Measuring longitudinal phase-space downstream of undulator:

- XTCAV: longitudinal coordinate → horizontal coordinate ("streaking")
- Dipole: energy → vertical coordinate (energy spectrometer)

Motivation

Extract difference of time-sliced energy loss and energy spread

- Replica of x-ray FEL-pulse
- Extract current profile
- > Obtain x-ray profile

Background of longitudinal phase-space measurements

> TCAV: longitudinal coordinate \rightarrow vertical coordinate

• Shear-parameter: $S := R_{34} \frac{\omega eV_0}{c^2|p|}$

• Calibration: vary phase and measure centroids $t = C_t \cdot y = \frac{1}{S c} \cdot y$

Non-streaked beam size limits resolution:

$$\sigma_{t,R} = \frac{\sigma_y(s)}{S(s) \cdot c} \qquad \text{Goal: } \sigma_{t,R} \approx \text{fs} \le \frac{L_{coh}}{c}$$

> Spectrometer: relative energy deviation \rightarrow horizontal coordinate

Calibration: vary beam energy/dipole current & measure centroids $\delta E = C_E \cdot x = \frac{1}{D_x} \cdot x$

$$\sigma_{\delta E,R} = \frac{\sigma_x(s)}{D_x(s)} \quad \text{Goal:} \quad \sigma_{\delta E,R} \approx 10^{-4} \dots 10^{-3} \le \rho_{FEL}$$

XTCAV

> Assuming LCLS-like TCAV for further considerations:

Frequency	11.424 GHz
Beam pipe diameter	10 mm
One cell length	8.747 mm
Phase advance per cell	2π/3
Kick per meter [MeV/Sqrt [MW]]	31 MeV/m/Sqrt(20 MW)
102 cell structure kick	21.3 MeV/Sqrt(20 MV)
Group velocity/ speed of light	3.2 % (~23MeV@20MW
Filling time	92 ns
Structure length (with beam pipes)	<u>~94 cm</u> (~1m)

$$V_0 \approx 46 \text{ MV}$$

 $f = 11.424 \text{ GHz}$

Assuming 2 x 1m @ 20 MW

Lattice and Optics - Current FLASH 2 Lattice

Starting downstream of undulator

Neglecting instruments and monitors (see "~/ttflinac/OPTICS/MAD")

D4FL2BURN and D1FL2DUMP

Lattice and Optics - Current FLASH 2 Lattice

 $eta_{y,tcav} pprox 5.5~{
m m}$ Large area with sufficient dispersion and phase advance

Matching

Done with MADX

- For best resolution in both dimensions (< 1 fs and < e-4 equally)</p>
- Screen position:

Match Quad strengths

Matching of all quads in accordance with boundary conditions

DUMP:

 $D_x, D_y < 2 \cdot 10^{-3} \text{ m}$ $\beta_x > 600 \text{ m}, \beta_y > 450 \text{ m}$

	β_y at teav	β_y at screen	$\psi_{oldsymbol{y}}$	S	$\sigma_{\mathbf{t},\mathbf{R}}$	D_x at screen	β_x at screen	$\sigma_{\delta {f E},{f R}}$
0.)	$5.5 \mathrm{~m}$	48 m	$120.6 \deg$	155	4.8 fs	$0.189 \mathrm{~m}$	2.9 m	$2.8 \cdot 10^{-4}$
1.)	$5.5 \mathrm{~m}$	49.2 m	$108 \deg$	172	4.3 fs	0.189 m	$1.32 \mathrm{~m}$	$1.9 \cdot 10^{-4}$

Match Quad strengths and positions

Setup 2) better energy resolution

	β_y at tcav	β_y at screen	$\psi_{m{y}}$	\mathbf{S}	$\sigma_{\mathbf{t},\mathbf{R}}$	\mathbf{D}_x at screen	β_x at screen	$\sigma_{\delta {\bf E}, {\bf R}}$
0.)	$5.5 \mathrm{~m}$	48 m	$120.6 \deg$	155	4.8 fs	$0.189 \mathrm{~m}$	2.9 m	$2.8 \cdot 10^{-4}$
1.)	$5.5 \mathrm{~m}$	49.2 m	$108 \deg$	172	4.3 fs	0.189 m	1.32 m	$1.9 \cdot 10^{-4}$
2.)	6.0 m	78.4 m	$148.5 \deg$	125	7.5 fs	0.09 m	0.14 m	$1.3 \cdot 10^{-4}$

Feasible and desirable? THz-Undulator + worse time resolution...

Jitter

> Calibration constants with jitter (worst case)

Beam Energy:	0.1%	\rightarrow	Energy and Phase scan
	$\sigma_{x,jit}=1$	$D \cdot \sigma_{\delta E, jit}$	
	$\sigma_{y,jit}$ = ,	$S \cdot \mathbf{c} \cdot t \cdot \sigma_{\delta}$	E,jit
XTCAV amplitude:	1%	\rightarrow	Phase scan
	$\sigma_{y,jit} =$	$S \cdot \mathbf{c} \cdot t \cdot \sigma_{\delta}$	A,jitt
Beam arrival time:	50 fs	\rightarrow	Phase scan
	$\sigma_{y,jit}=\omega$	$S \cdot \mathbf{c} \cdot \sigma_{t,jit}$	
XTCAV phase:	0.1°	\rightarrow	Phase scan
	$\sigma_{y,jit} =$	$rac{S \cdot \mathbf{c}}{\omega} \cdot \sigma_{\phi,jitt}$	

- Setup 1 sufficient, simulations with elegant
 - Largest S and biggest Dispersion
- > 2 cm x 2 cm screen
- > 10 shots for each step

Jitter

XTCAV Amplitude:

Nils Lockmann | FLASH 2 TDS | 7.7.2015 | Page 14

Jitter

Bunch simulations

FEL-off (start to end simulation)

 $Q = 0.25 \text{ nC}; I_p = 2.5 \text{ kA}; E = 1000 \text{ MeV}; \epsilon_{n,x} = 0.82 \ \mu\text{m}; \epsilon_{n,y} = 0.75 \ \mu\text{m}$

	β_y at teav	β_y at screen	$\psi_{m{y}}$	S	$\sigma_{\mathbf{t},\mathbf{R}}$	\mathbf{D}_x at screen	β_x at screen	$\sigma_{{f E},{f R}}$
0.)	$5.5 \mathrm{~m}$	48 m	$120.6 \deg$	155	2.9 fs	0.189 m	2.9 m	$1.8 \cdot 10^{-4}$
1.)	$5.5 \mathrm{~m}$	49.2 m	$108 \deg$	172	$2.67~\mathrm{fs}$	0.189 m	$1.32 \mathrm{~m}$	$1.2 \cdot 10^{-4}$
2.)	6.0 m	78.4 m	$148.5 \deg$	125	4.6 fs	0.09 m	0.14 m	$0.9 \cdot 10^{-4}$

- > Elegant simulations (250 000 macroparticles)
- Proceed as in experiment
 - Calibration: Scans
 - Temporal resolution: non-streaked beam size

Nils Lockmann | FLASH 2 TDS | 7.7.2015 | Page 17

CSR influence

> CSR because of dipole could have influence on measurements

Nils Lockmann | FLASH 2 TDS | 7.7.2015 | Page 22

> 3 different setups

- Screen position; + quad strengths (better time resolution); + quad positions (better energy resolution) $|S| = \sigma_{t, B} = \sigma_{s, E, B}$
- > Jitter can be dealt with
- > CSR has no influence
- Sufficient results for all 3 setups
 - Should be able to resolve FEL effects
- > FEL pulse
- Comparison simulated x-ray pulse and reconstruction
- Which setups are feasible and which is best suited?
- Changing optics before TCAV could highly improve resolution
 - Larger $\beta_{y,tds} \rightarrow \beta \approx 200 \text{ m} \rightarrow \sigma_t < 1 \text{ fs}$

	S	$\sigma_{t,R}$	$\sigma_{\delta E,R}$
0.)	155	2.9 fs	$1.8 \cdot 10^{-4}$
1.)	172	2.67 fs	$1.2 \cdot 10^{-4}$
2.)	125	4.6 fs	$0.9 \cdot 10^{-4}$

Acknowledgements

Thank you for your attention!

> Special thanks to:

C. Behrens, B. Marchetti, J. Zemella, G. Feng, S. Schreiber, M. Vogt, S. Duesterer

BACKUP SLIDES

Dependencies

CSR influence

Simulated longitudinal phase space at screen

Correlations

- Intrinsic effects can lead to initial t-yp correlation
- Systematic error on measurements
- Can be corrected by a second measurement changing the TCAV phase by 180°
- However was not observed here!

Reconstruction of temporal x-ray profile

