Current Status of Time Domain Wakefield Solver for Resistive Structures

TECHNISCHE UNIVERSITÄT DARMSTADT

A. Tsakanian[#], E. Gjonaj, H. De Gersem, T. Weiland TU Darmstadt, TEMF

TEMF – DESY Collaboration Meeting

15 June 2015 DESY, Hamburg

> Achievements

> Ongoing activity

General Requirements on Wakefield Solver

Solver Capabilites Fully Time Domain **3D** Structures Ultra-short bunches Numerical Method 3D Numerical Scheme \geq Dispersion Free in longitudinal direction Moving Window \succ Parallel computing

General Requirements on Wakefield Solver

Dispersion-Free Numerical Method

Staggered Finite Volume Time Domain Method

• E. Gjonaj, T. Lau, T. Weiland, Wakefield Computation with the PBCI Code using a Non-Split Finite Volume Method, Proceedings of PAC09, Vancouver, Canada, 2009, pp. 4516-4518

Faraday's Law

$$\frac{d}{dt} \int_{V} \mu \vec{H} \, dV = -\oint_{\partial V} \vec{E} \times d\vec{A}$$

Faraday's Law

$$\frac{d}{dt} \int_{V} \mu \vec{H} \, dV = -\oint_{\partial V} \vec{E} \times d\vec{A}$$

Х

TECHNISCHE

UNIVERSITÄT DARMSTADT

Dispersion Properties of Numerical Methods

SIBC in Frequency Domain $\vec{E}_{\tau} (\omega) = Z_s(\omega) [\vec{n} \times \vec{H}_{\tau}(\omega)]$ I $Z_s(\omega) \cong j\omega L + \alpha_0 + \sum_{i=1}^{Np} \frac{\alpha_i}{j\omega + \beta_i}$ Rational Function Approximation (RFA)

• B. Gustavsen, Improving the pole relocating properties of vector fitting, *IEEE Trans. on Power Delivery*, vol. 21, pp. 1587–1592, 2006

Surface I	Imped	lance of	f Good	l Coi	nductors

Metal Type	Conductivity [MS/m]	Relaxation Time [fs]
Cu	58	24.6
Al	36.6	7.1
SS 316	1.34	2.4
Ti-6Al-4V	0.5	1.04 (?)

Boundary Effects

- M. Dohlus. TESLA report 2001-26, 2001
- K. Bane, G. Stupakov, SLAC-PUB-10707, 2004
- A. Tsakanian, M. Dohlus, I. Zagorodnov, TESLA-FEL-2009-05, 2009

Accuracy of Vector-Fitting technique Good Conductors jωμ $Z_{s}(\omega) \cong j\omega L + \alpha_{0} + \sum_{i=1}^{1} \frac{\alpha_{i}}{j\omega + \beta_{i}}$ $Z_{s}(\omega) \cong 1$ Example : Cu - Np = 21, Frequency range ~ 10MHz-5THz, Δf ~5MHz3 Fitted .10⁰ Analytic ຼັ ຼີຍ_10⁻¹ ເມ Relative E 10⁻³L 2 0.4 0.6 0. Frequency [GHz] 0.2 0.8 0 2 3 5 Frequency [THz]

SFVTD Method with SIBC-TD

Control volumes (shaded) at SIBC boundaries (red) and associated DoFs with respect to a cell volume of primary grid (black).

SFVTD Method with SIBC-TD

SFVTD Method with SIBC-TD

Numerical Example

Numerical Example

Convergence of the Scheme

15 June 2015 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Dr. Andranik Tsakanian | 22

TECHNISCHE

UNIVERSITÄT DARMSTADT

Intermediate Summary

Achievements

- Time Domain SIBC model & RFA Accuracy
- TD-SIBC Implementation in 3D SFVTD
- Stability & Convergence Analyses
- PBCI Mesher Adoption for SFVTD Method
- Implementation of SFVTD Method in PBCI
 - PEC BC
 - TD SIBC
 - Validation

Ongoing Activity

▶ Initial Fields & Current Generation – Ultra-Relativistic Bunch.

Initial Field & Current Density Generation

 $\rho_{3D}(x, y, z) = \rho_{\perp}(x, y) \cdot \rho_{\prime\prime}(z)$

Only transverse non-zero EM field components

TECHNISCHE UNIVERSITÄT DARMSTADT

 $\boldsymbol{E}_{\boldsymbol{X}}$

 H_x

TECHNISCHE UNIVERSITÄT DARMSTADT

Η

 E_y

Х

3D Transverse Magnetic Field $\begin{array}{c} h_x^{n-0.5} \leftarrow -e_x^n \\ h_y^{n-0.5} \leftarrow e_y^n \end{array}$ $\boldsymbol{E}_{\boldsymbol{X}}$ Electric field Н H averaging in X-direction H_x H_x **Check Field Consistency** $H_z/E_z/J_z$ $\frac{H_z}{E_z}$ $h^{n-0.5} = \begin{pmatrix} h^{n-0.5}_{x} & h^{n-0.5}_{y} & 0 \end{pmatrix}^{T}$ Χ $Div \cdot h^{n-0.5} = 0$ **x 10**¹⁰ Jz from (Curl*H) - XZ $\underline{Div} \cdot C \cdot h^{n-0.5} = 0$ 6 **Current Density Generation** 2 $e_{z}^{n+1} = e_{z}^{n} + \Delta t \cdot M_{\varepsilon_{z}}^{-1} \left(P_{y}^{T} h_{x}^{n-0.5} + P_{x} h_{y}^{n-0.5} \right) - \Delta t \cdot M_{\varepsilon_{z}}^{-1} \cdot j_{z}^{n-0.5}$ 0 -2 -0.2 $\int_{z}^{n-0.5} = P_{y}^{T} h_{x}^{n-0.5} + P_{x} h_{y}^{n-0.5}$ ⁰ 0.2 0.8 0.6 0.4 0.2 0 0.4 0.6

Consistency of Generated Field Transverse Components with Update Equations.

Consistency of Generated Field Transverse Components with Update Equations.

Consistency of Generated Field Transverse Components with Update Equations.

Consistency of Generated Field Transverse Components with Update Equations. E-field update

▶ Initial Fields & Current Generation – Ultra-Relativistic Bunch ...

Consistency of Generated Field Transverse Components with Update Equations.

▶ Initial Fields & Current Generation – Ultra-Relativistic Bunch ...

Thank You for Your Attention!

Numerical EM Field Energy

