

TECHNISCHE UNIVERSITÄT DARMSTADT

Ye Chen, Erion Gjonaj TEMF, TU Darmstadt

DESY-TEMF Collaboration Meeting Lecture Room S2|17-103, TEMF, TU Darmstadt February 12th 2015

Contents

- Introduction
- Space Charge Limited (SCL) Emission (cont'd)
 - Further Validation of Simulation Algorithm
- Analytical Analysis of Effective Bunch Size by SCL Emission Models (new)
- Quantum Efficiency Limited (QEL) Emission (new)
 - Time-Dependent Emission Modeling
 - Simulation Results & Comparisons with Measurements
- Summary & Perspective

Introduction: motivation

- Discrepancy of the total extracted bunch charge in between experiments and simulations.
- Space charge limit predicted by previous simulations at less than 1 nC for XY_rms = 0.3 mm, whereas 1 nC and even higher bunch charges were detected experimentally.

Objectives:

- 1. Find out the discrepancy source from the simulation side
- 2. Improve the beam dynamics modeling of the bunch emission process

Total Emitted Bunch Charge vs. Launch Phase

Introduction: from observations to assumptions

TECHNISCHE UNIVERSITÄT DARMSTADT

Introduction: from observations to assumptions

DARMSTADT

- **Space Charge Limited (SCL) Regime:**
 - **Main Idea:** assuming that the emission source just provides the maximum number of particles that allows the beam to propagate without reflected particles (space charge limit calculation)
 - Simulation Method: "Bunch Charge Iteration Algorithm"
- **Quantum Efficiency Limited (QEL) Regime:**
 - **Main Idea:** assuming a time-dependent emission where the initial charge distribution needs to be modified due to the transient effects during emission (time-dependent QE)
 - Simulation Method: "Temporal Profile Iteration Algorithm"

TECHNISCHE UNIVERSITÄT DARMSTADT

Bunch Charge Extractions in the SCL Regime

(see the simulation algorithm from YC's talk at DESY Hamburg, 09.07.2014)

 Algorithm validation: considering different laser spot sizes (σ_{xy}), accelerating field gradients (Ecath), laser transmissions (LT) and temporal laser profiles (FT/GS) for SCL simulations

Simultaneous variations of multiple parameters

9	#	σ _{xy} /mm	LT	P _{rf, gun} /MW	$\sqrt{P_{rf, gun}} imes \pmb{\sigma}_{xy}$
\$	1	0.302	57%	6.49	0.769
t1	2	0.312	52.6%	5.99	0.764
Jen	3	0.327	48.2%	5.45	0.763
rin	4	0.341	43.8%	5.00	0.762
be	5	0.361	39.5%	4.55	0.770
ш	6	0.382	35.1%	3.99	0.762

laser spot size σ_{xy} RF power $P_{rf, gun}$ Laser transmission LT

- 1. Reproduce the six measurements in simulations
- 2. Compare the total bunch charge with measurements in the SCL regime

TECHNISCHE UNIVERSITÄT DARMSTADT

••••• Measurement;••••• Simulation (100% LTs); ••••• Simulation (lower LTs)

Further validation by considering different temporal laser profiles

- 1. Reproduce the four measurements in simulations
- 2. Compare the total bunch charge with measurements in the SCL regime

100 90

80

70

60

30

20

10

50 ₹

2.

TECHNISCHE UNIVERSITÄT DARMSTADT

3.

TECHNISCHE UNIVERSITÄT DARMSTADT

1.5 SCL to QEL transition: 1.4 1.4 Simulated, FT-7-75MW, LT=100% 1.3 Simulated, FT-4MW, LT=100% 1.3 Measured, FT-7-75MW, 37nJ 1.2 1.2 Measured, FT-4MW, 37nJ 1: FT + 7.75 MW 1.1 1.1 Most linear Ou 0.9 0.8 0.7 0.9 2: FT + 4 MW (ju) extraction 0.8 0.7 ð Ø 0.6 0.6 3: GS + 7.75 MW 0.5 0.5 0.4 0.4 0.3 QEI 0.3 QEL **Strongest saturation :** 0.2 2 15 20 25 30 35 40 45 50 55 60 65 10 10 15 20 25 30 35 40 45 50 55 60 65 4: GS + 4MW total bunch charge (y-axis) vs. field gradient (x-axis) closest to SCL 1.4 1.4 Simulated, GS-7-75MW 1.3 1.3 Measured, GS-4MW, 37nJ 1.2 1.2 Most linear extraction: Measured, GS-7-75MW, 37nJ 1.1 1.1 Simulated, GS-4MW (nc) 0.9 0.9 (Du D 1: FT + 7.75MW 0.8 strongest 0.8 0.7 0.7 Ø Ø saturation 0.6 0.6 0.5 0.5 0.4 0.4 QE 0.3 0.3 0.2 3 Δ 20 25 30 35 40 45 50 55 60 65 15 20 25 30 35 40 45 50 55 60 65 70 5 10 15 Ecath at emisison (MV/m) Ecath at emission (MV/m)

Intermediate Summary

- 1. Measurements at the space charge limits with all machine parameters can be reproduced correctly by full-wave PIC simulations, but not by Astra.
- 2. "Bunch Charge Iteration Algorithm" has been proposed and verified based on the self-consistent emission model of CST-PS.
- 3. Comparison results have shown, that the transverse profile of the bunch does not play a critical role in the bunch charge studies.

Analysis of Effective Bunch Size at Emission by SCL Emission Models (new)

(Investigations on **the shift of the laser spot size** for the optimum emittance at EMSY1)

- Model A: 1-D Parallel Plate Capacitor (PPC)
- Model B: 2-D C-L Scaling Law Based on PIC Simulations
- Model C: 2-D Analytical C-L Scaling Law

Motivation

- The optimum laser spot size for minimum emittance at EMSY1 was found at ~0.3 mm rms, however, all simulations predict an optimum spot size of 0.4 mm rms for 1 nC case.
- Q = 1 nC, XY_rms = 0.3 mm, close to the space charge limit
- New charge simulations by CST-PS have shown good agreements with measurements at the space charge limits.

 $shift factor(SF) = rac{effective bunch size}{laser spot size}$

Model A: 1D Parallel Plate Capacitor (PPC)

SC field: $E_{sc} = \sigma/\epsilon_0$ SCL occurs when $E_{sc} = E_{rf}$ Limiting charge density: $\sigma_{scl} = \epsilon_0 E_{rf}$ Emitted charge: $Q = \pi R^2 \epsilon_0 E_{rf} sin \phi_{rf}$

R: effective bunch size, should be found by measurements

Model A: 1D Parallel Plate Capacitor (PPC)

#	Laser Spot Size σ_{xy} (mm in rms)	Effective Radius R _{eff} (mm in rms)	Shift Factor = R _{eff} /σ _{xy}
1	0.302	0.4478	1.483
2	0.312	0.4603	1.475
3	0.327	0.4775	1.460
4	0.341	0.4908	1.439
5	0.361	0.5060	1.402
6	0.382	0.5322	1.393

- PPC model fits the measurement data with a prediction of larger effective bunch size than laser spot size
- The shift factor is ~1.45 > 1.2
- PPC model is only in 1D, apparently not accurate enough! 2D Models

Model B: 2D C-L Scaling Law based on PIC Simulations

$$Q_{SCL-2D} = \frac{8}{9}\pi\varepsilon_0 E_0 \times (R^2 + 0.15725Rd + 0.0001d^2)$$

	I		$4\varepsilon_0$		2 <i>e</i>	$V_0^{3/2}$
-L Law:	J SCL-1D	_	9		m	<i>d</i> ²

Scaling Law for finite transverse dimension:

$$\frac{J_{SCL_{2D}}}{J_{SCL_{1D}}} = 1 + \frac{0.3145}{w/d} + \frac{0.0004}{(w/d)^2}$$
$$V_0 = E_0 d, \ d = \frac{eE_0}{2m} \Delta t^2$$

d:bunch extension length to effective diode w: width of emission, 2*R

#	Laser Spot Size σ _{xy} (mm, rms)	Effective Radius R _{eff} (mm, rms)	Shift Factor = R _{eff} /σ _{xy}	R-square of Fitting	 Predicted spot size > laser spot size Shift factor
1	0.302	0.332	1.099	0.970	$-$ Shift factor $\sim 1.1 < 1.2$
2	0.312	0.346	1.109	0.969	– Model B is in 2D, but the length
3	0.327	0.368	1.125	0.966	of the effective diode is fixed for
4	0.341	0.385	1.129	0.963	all the cases, which results in
5	0.361	0.404	1.119	0.959	inaccuracies. 🔥 2D Model with
6	0.382	0.436	1.141	0.949	unfixed d _{eff}

12-02-2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 18/40

Model C: 2D C-L Scaling Law

0.419

0.432

1.159

1.131

1.26

1.10

0.361

0.382

6

I₀: constant, 17kA

0.8831

0.8459

Analysis of Effective Bunch Size at Emission

Estimations of Emission Spot Size with Different Analytical Models at SCL

#	Laser Spot Size	Shift Factor = Fitted Spot Size / Laser Spot Size						Effective Dioc	
	(mm in rms)	1-D PPC	2-D C-L (PIC)	2-D C-L (Analytical		cal)		d _{eff} (mm)	
1	0.302	1.483	1.099	1.232				1.63	
2	0.312	1.475	1.109		1.224			1.55	
3	0.327	1.460	1.125		1.199			1.39	
4	0.341	1.439	1.129		1.191			1.37	
5	0.361	1.402	1.119		1.159			1.26	
6	0.382	1.393	1.141		1.131			1.10	

- Predicted spot size > laser spot size
- Shift factor 1.232 ≈ 1.2
- Model C predicts a most comparable shift factor as observation at EMSY1

Intermediate Summary

- 1. The shift of the laser spot size for minimum emittance at EMSY1 can be explained by the 2D C-L Law analytically.
- 2. Simulation prediction fits the theory of SCL emission which indicates the shifting is unlikely physical but seems coming from measurement issues.
- 3. For that reason, relevant experimental issues in terms of the laser spot size measurement need to be checked.

Quantum Efficiency Limited (QEL) Emission (new)

Descriptions

In QE-Limited Regime,

- 1. QE strongly depends on the fields at the cathode surface and becomes time-dependent due to the field effects
- Production of the electron bunch will then, not only depend on the cathode drive laser, but also the QE of the cathode
- Normally the electron bunch at the cathode reproduce the cathode drive laser profile.
 But now, the cathode laser pulse profile ≠ the emitted electron bunch profile because of a time-dependent QE
 - Transient effects modeling
 - Field effects on QE can be determined by the Schottky effect
 - Time-Dependent emission model will lead to a modified "asymmetric temporal profile" of the drive laser pulse

Longitudinal Beam Dynamics Modeling

Mathematical Model

Time-Dependent Emission Modeling

(1)
$$QE(t) = \eta [h\nu - (\Phi_{cath} \mp \Delta \Phi(t))]^2$$
 QE behavior

(2)
$$\Delta \Phi(t) = \sqrt{\frac{e^3}{4\pi\varepsilon_0}} E_{cath}(z=0,t)$$

(3)
$$Q(t) = \int_{-\infty}^{t} e \frac{P_{laser}(\tau)}{h\nu} QE(\tau) d\tau$$

work function reduction due to field effects

total charge produced at the cathode

 Φ_{cath} : work function, 3.5 eV, hv = 4.81 eV P_{laser} : power profile of the laser pulse $\Delta \Phi(t)$: modification of the work function η : cathode property constant E_{cath} : total fields at the cathode surface " \mp " characterizes the work function variation when the total field changes sign 12-02-2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 24/40

Mathematical Model

η,

describing **cathode properties**, which should be found from the specific emission measurement

In theory, η should be exactly identical for the same photocathode under same experimental conditions.

$$QE(t) = \prod [hv - (\Phi_{cath} \mp \Delta \Phi(t))]^{2} (1)$$

$$\Delta \Phi(t) = \sqrt{\frac{e^{3}}{4\pi\varepsilon_{0}}} E_{cath}(z = 0, t) (2)$$

$$Q_{meas}$$

$$Q(t) = \int_{-\infty}^{t} e \frac{P_{laser}(\tau)}{hv} QE(\tau) d\tau (3)$$

Determining η , by numerically integrating Equations (1) to (3) in the designed simulation loop, such that Q in Eq. (3) equals to the measured total charge, then Q(t) gives the modified temporal profile accordingly.

If η is found to be same everywhere, then the model is correct.

nbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 26/40

Comparisons to Measurements

two typical measurements for injector commissioning

Measurement A:

Total Charge vs. Field Gradients at E_{laser}=37 nJ

2 Temporal Profiles + 2 Gun Powers

		7.75MW	4MW		
	Flat-top (17ps)	case 1	case 3		
12-	Short Gaussian (2.7ps)	case 2	case 4		

Measurement B:

Total Charge vs. Laser Energies at MMMG phase

- 1. Reproduce the four measurements in simulations
- 2. Compare the total bunch charge with measurements in QEL regime

Simulation Results: applying to different field gradients

TECHNISCHE UNIVERSITÄT DARMSTADT

Simulation Results: applying to different field gradients

iteration evolution of main parameters Measurement A 700 Q vs. Ecath 3 600 0. eta = 0.0492 0. eta = 0.0455 50 50 eta = 0.0348 1, eta = 0.0351 500 2. eta = 0.0351 40 2. eta = 0.0349 40 E_{laser}=37nJ 3. eta = 0.0349 3, eta = 0.0351 400 30 30 **P**_{eff} P_{eff} 300 LOW.ICT1, 7.75MW, Flat-top, 37nJ 20 20 LOW.ICT1, 7.75MW, Gaussian, 37nJ 200 LOW.ICT1, 4MW, Flat-top, 37nJ 10 10 LOW.ICT1, 4MW, Gaussian, 37nJ 100 Q(QE-limit), Me-cathode, m=2 25 20 20 25 - Q(QE-limit), m=1 10 15 30 10 15 30 5 0 time (ps) time (ps) 30 35 0 5 10 15 20 25 40 45 50 55 60 65 7 × 10' 7 × 10 Ecath@emission (MV/m) **E**_{tot} -tot **MW RF** Power Elaser Ecath 10 15 20 25 5 10 15 20 25 30 5 30 time (ps) time (ps) η (MV/m) (nJ) 0.1 0.1 QE QE 0.095 0.095 0.0349 3 ~46 0.09 0.09 37 0.085 0.085 0.0351 ~63 4 0.08 0.08 0.075 0.075 0 5 10 15 20 25 30 0 5 10 15 20 25 30 nen | 29/40 time (ps)

Simulation Results: applying to different laser energies

Simulation Results: applying to different laser energies

Simulation Results: applying to different laser profiles(Gaussian)

100

80

60

40

20

2.5

2

1.5 1

0.5 L

0.085

0.08

0.075

0

time (ps)

00

3 × 10

TECHNISCHE UNIVERSITÄT

DARMSTADT

Simulation Results: applying to different laser profiles

At QE-Limited Regime

Elaser Profile **RF Power** η 0.0372 1 37 nJ FT 4 MW 2 FT 4 MW 37 nJ 0.0383 3 FT 7.75 MW 37 nJ 0.0349 $ar{\eta}pprox$ 0.0359 $\frac{\eta_i - ar{\eta}}{2} imes 100 < 6.3\%$ 4 FT 7.75 MW 37 nJ 0.0351 20 nJ 5 FT 4 MW 0.0357 η_i 0.0361 6 FT 7.75 MW 20 nJ 7 GS 4 MW15 nJ 0.0362 8 GS 4 MW 20 nJ 0.0340

- η found by simulations for 2 temporal profiles, 2 gun powers, 3 laser engeries and several field gradients, are quite close to each other, which indicates the emission model works well in the QEL Regime!!

Intermediate Summary		^{BLE II.} IZ. QE of the Photocathodes at PITZ						
		Reflectivity at 543 nm	Cleaning process	Deposition date	QE at 254 nm	QE at 262 nm		
	58.1	56.9%	Standard	December 17, 2004	10.2%			
	34.6	56.5%	CO_2	December 15, 2006	11.5%	7.5%		
	42.3	55.8%	Standard	April 5, 2007	11.5%			
	83.3 ^a	56.1%	CO_2	December 22, 2006	12.0%	7.9%		
	90.1	56%	Standard	April 3, 2007	9.5%			
	109.1	57%	Standard	April 2, 2007	6.2%			
				*				

- 1. The time-dependent emission model well predicted the total bunch charge in the QEL regime for full range of machine parameters.
- 2. Self-consistent simulation loop has been designed and applied to study the longitudinal beam dynamics.
- **3.** Predicted QE are comparable with the experimental findings.

iteration evolution of main parameters

From QEL to SCL

What happens if applying the model to the case close/at SCL?

50 55

η is smaller than in the QEL regime!!

TECHNISCHE UNIVERSITÄT DARMSTADT

From QEL to SCL

 $QE(t) = \boldsymbol{\eta} [h\nu - (\Phi_{cath} \mp \Delta \Phi(t))]^{2} (1)$ $\Delta \Phi(t) = \sqrt{\frac{e^{3}}{4\pi\varepsilon_{0}}} E_{cath}(z = 0, t) \qquad (2)$ $Q(t) = \int_{-\infty}^{t} e^{\frac{P_{laser}(\tau)}{h\nu}} QE(\tau) d\tau \qquad (3)$

	E _{laser} (nJ)		Ecath (MV/m)	η
9		GS + 4 MW RF Power	~29.8	0.0235
10	37	FT + 4 MW RF Power	~19.7	0.0240
11		FT + 7.75 MW RF Power	~17	0.0230

- η smaller than in QEL regime, which means the QEL model predicts more charge at the space charge limit. \rightarrow Unphysical
- The reason is, that Eq. (3) should be normalized to the totally produced charge at the cathode, but at the space charge limit, Q_{meas} = Q_{scl} < Q_{QEL} !!!
- Even so, the QEL model gives the same η at space charge limits under different situations, which again indicates the model itself is correct !!!

Intermediate Summary

- 1. The bunch charge at the space charge limit predicted by the QEL emission model, should be normalized to the total produced charge at the cathode.
- 2. Same η is given by the QEL emission model even for different space charge limits, which indicates the model is correct.
- 3. Ongoing work to generalize the emission model which also works in the SCL regime. Until then, one can refer to our previous charge iteration algorithm for the SCL bunch charge.

Summary and Perspective

- SC-Limited Regime

- Self-consistent emission model of CST-PS can well predict the total bunch charge in the SCL regime for full range of machine parameters.
- Bunch Charge Iteration Algorithm has been proposed and applied to SCL charge simulations.
- **Simulation predictions of the bunch spot size** well fit the theory of SCL emission, which suggests the shifting problem at EMSY1 is likely from the experimental issues.

– QE-Limited Regime

- The time-dependent emission model works well in the QEL regime for distinct experimental conditions.
- Temporal Profile Iteration Algorithm was proposed and used to QEL charge simulations.
- Ongoing work to generalize the emission model which works for SCL and QEL regime in the meantime.

Reference

- 1. Mikhail Krasilnikov, PITZ: Simulations versus Experiment, Darmstadt, 19.12.2013
- 2. Rosenzweig et al., NIM A341(1994)
- 3. J. W. Luginsland et al., Physics of Plasmas Vol. 9, No.5 (2002)
- 4. D. Filippetto et al., PRST-AB 17, 024201 (2014)
- 5. David H. Dowell et al., PRST-AB 12, 074201 (2009)
- 6. Computer Simulation Technology AG, http://www.cst.com/

Thank you for your attention!

