Numerical Study of the Self-modulated Plasma Wakefield Acceleration

TECHNISCHE UNIVERSITÄT DARMSTADT

Bifeng Lei TEMF-DESY Collaboration Meeting Technische Universität Darmstadt, TEMF Darmstadt , 12.02.2015

Content

- Introduction
- PWFA Linear Theory
- Numerical simulations
- Benchmark
- Summary and Perspective

TECHNISCHE Introduction: SMPWA experiment at PITZ UNIVERSITÄT DARMSTADT $\leftarrow e^-$ propagation direction HIGH2 HIGH1 BOOST LOW DUMP PST GUN RFD 22143 21091 15494 11546 10438 5130 2730 527 0 EMSY3 180°dipole EMSY2 60° dipole Beam Phase Space Tomography module Transverse EMSY1 Booste Gun Dump Deflecting Structure Cavity 20186 17614 7367 4675 1116 DISP3 DISP2 DISP1 **RF** gun TDS EDA2 Plasma

Main Purposes:

- Demonstrate the principle of self-modulation of long electron bunches in plasma
- Study the underlying physics of plasma-electron interaction, such as dephasing, hosing-instability, etc.
- To gain insight into the experiment conditions for the proposed AWAKE project at CERN, such as the beam matching, etc.

Introduction: Simulation code – PAMASO (Particle Maxwell Solver)

- Fully explicit 3D code \rightarrow Avoid to lose any physics
- Input beam file with the real distribution, i.e ASTRA tracing file of PITZ beam → Make the simulation close to the real experiments
- Extremely low numerical dispersion and the excellent numerical accuracy → allow to use the sparse grid → Largely reduce the simulating resource consumption to make it possible run on the desktop PC.

Code benchmark

	PAMASO	OSIRIS	HiPACE
Type of the code	PIC-High Order DG	PIC-FDTD	Paraxial-Code

- HiPACE simulation was done by PhD. Gaurav Pathak at Zeuthen
- OSIRIS simulation was done by Dr. R. Fonseca, et al. at Hamburg

Introduction: SMPWA Simulation schema

Introduction: SMPWA Simulation schema

TECHNISCHE UNIVERSITÄT DARMSTADT

PWFA Linear Theory

With the following 2D linear assumptions:

- Azimuthal symmetry, $\partial/\partial_{\theta} = 0$
- Static plasma ions
- Cold plasma
- Beam velocity is close to the speed of light, $v_b = c$
- Negligible second order perturbation

The normalized electron plasma density perturbation is given by : $\xi = z - ct$

 $\left(\partial_{\xi}^2 + k_p^2\right)\delta n/n_0 = -k_p^2 n_b/n_0$

The beam driven longitudinal and transverse wake field are given by:

 $\left(\nabla_{\perp}^2 - k_p^2\right) E_z / E_0 = -k_p \partial_{\xi} \delta n / n_0$

$$\left(\nabla_{\!\!\perp}^2-k_p^2)(E_r-B_\theta)/E_0=-k_p\partial_r\delta\,n/n_0\right.$$

R. Keinigs, et al. Phys. Fluid 30, 252(1987)

Parameters	Value	
Plasma density	$n_p = 1 \times 10^{15} cm^{-3}$	
Transverse beam size	$\sigma_{x,y} = 42\mu m$	
Longitudinal beam size(FWHM)	$L_b = 6mm,$ (RMS $\sigma_z = 1.7mm$)	
Peak Beam density	$n_{b0} \sim 10^{13} cm^{-3}$	
Plasma wave frequency	$\omega_p = 1.78THz$	
Plasma wave number	$k_p = 5.94 mm^{-1}$	
Plasma wave length	$\lambda_p = 1mm$	
Energy of the beam	$KE = 21.5 MeV \rightarrow \gamma \approx 42$	
Number of the electrons in one bunch	<i>N_b</i> ~10 ⁹	
Number of macro particles in one bunch	0.2 million	
Length of plasma density ramp	0 mm	

PWFA Linear Theory : Radius Self-Modulation

Further, the growth rate of self modulation is given by:

$$T \approx \frac{3\sqrt{3}}{4} \omega_p \left[\frac{\alpha}{\gamma_b} \frac{|\xi|}{z}\right]^{1/3}$$

 $\alpha = \frac{n_b}{n_e}$ is the ratio of beam density to plasma electron density .

Assuming a small perturbation on plasma density, the EM wave phase velocity could be given by

$$v_{ph} = v_b \left(1 - \frac{1}{2} \left(\frac{1}{2\gamma_b} \frac{\alpha}{z} \xi\right)^{1/3}\right)$$

A. Pukhov at el. PRL 107,145003(2011

Wakefield Generation: Simulation Results, Longitudinal Wakefield

On-axis Longitudinal Electric Field

After 10mm propagation in plasma the beam density is not modulated too much and could be considered same as initial.

Engineer formula of the peak value for the flat-top is given with $k_p \sigma_r \ll 1$ $E_z \cong$ $Q[nC] \cdot (\frac{11.28}{L_b[mm]}) \cdot (\frac{n_p[cm^{-3}]}{10^{14}})^{1/2} \cdot (e^{\frac{n_p[cm^{-3}]}{10^{14}} \cdot (1.3 \cdot \sigma_r[mm])^2}) \cdot (0.06 - \ln(\frac{n_p[cm^{-3}]}{10^{14}} \cdot (1.3 \cdot \sigma_r[mm])^2))[MV/m]$

$$E_{wb} = \frac{mc\omega_p}{e} \cong 3.03 GeV/m$$

Excited electric field behind the bunch

$$E_z(0,\xi) \cong 2.5[MV \cdot m^{-1}] \times \operatorname{sin} k_p \xi$$

Energy modulation

0mm in plasma

40mm in plasma

Energy modulation

Februaur, 12, 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | M. Sc. Bifeng Lei | 13/24

Dephasing length is approximately

 $v_{ph} = v_b \left(1 - \frac{1}{2} \left(\frac{1}{2\gamma_h} \frac{\alpha}{z} \xi\right)^{1/3}$

With the initial parameters: $\gamma_b \approx 42$ $|\xi| \approx 4.8 / 5.2$ $\alpha \approx 0.015$ $\lambda \approx 1mm$

 $|\xi| \approx 4.8$, decelerating phase

Phase Slippage

= •

50

Dephasing

Energy modulation: Energy Modulation and Dephasing

Energy modulation at the different position shows the characteristics of the excited wakefield.

Wakefield Generation: Simulation Results, Transverse Wakefield

Radius Self-Modulation: Onset of Beam Envelop modulation

TECHNISCHE UNIVERSITÄT DARMSTADT

After 10mm propagation in plasma $\alpha = 0.015$ $\alpha/z = 0.0015 mm^{-1}$ After 16mm propagation in plasma $\alpha = 0.043$ $\alpha/z = 0.002 mm^{-1}$ After 36mm propagation in plasma $\alpha = 0.015$ $\alpha/z = 0.0003 \ mm^{-1}$

Normalized Particle density in the longitudinal direction

Radius Self-Modulation: Onset of Envelop modulation

Radius Self-Modulation: Onset of Envelop modulation

z = 54mm

TECHNISCHE UNIVERSITÄT

DARMSTADT

Radius Self-Modulation: Beam Envelop Modulation inside the bunch

Code benchmark : PAMASO VS. OSIRIS VS. HiPACE

Code benchmark- Energy modulation

22.4 Energy Distribution 22.4 22.2 22.2 Pz, [MeV/c] 21.6 21.6 21.4 21.4 -3 -2 -1 2 З 0 1 -2 -4 0 z-<z> [mm] 2 4 $\xi,[mm]$ $z = 54mm, \sigma_{x:y} = 27\mu m$ PAMASO **HiPACE** Energy Distribution $\chi^2/ndf = 2.06$ z = 67.6 mm 22.4 22.4 (c) 22.2 Energy [MeV] 22.2 KE, [MeV] 22 21.8 21.8 21.6 21.6 -4 Ó 1 2 -3 -2 -1З -8 -2 0 -6 -4 $\xi,[mm]$ ζ [mm] $z = 67mm, \sigma_{x;y} = 42\mu m$ PAMASO **OSIRIS**

Code benchmark – Radius modulation

Summary and Perspective

Summary

- ✓ Simulate the PITZ transport line for PWFA experiment by ASTRA
- $\checkmark\,$ Demonstrate the capability of PAMASO code for a simulation of SMPWFA
- ✓ Preliminarily demonstrate the principle of SMI
- $\checkmark\,$ Benchmark the code against with OSIRIS and HiPACE

Perspective

However, a lot of works are still needed...

- Hosing instability
- Seeding of SMI
- Dephasing
- Stable propagation and beam lose
- Phase velocity evolution
- Further simulation works on the SMPWA experiment at PITZ

• ...

Thank you so much for your attention!

