Outlook on SIBC Implementation in Time-Domain Wakefield Calculations

TECHNISCHE UNIVERSITÄT DARMSTADT

Andranik Tsakanian TU Darmstadt, TEMF

TEMF – DESY Collaboration Meeting

09 July 2014 DESY, Hamburg

Contents

- Introduction
- Physical and numerical motivations
- SIBC in time domain
- Dispersion free numerical methods
- Applications

Introducion

Physical Motivation

Requirements on electron beam

• Electron beam emittance

$$\varepsilon < \frac{\lambda_{\rm r}}{4\pi}$$

(Overlapping of electron and photon beams in phase space)

• Relative energy spread (typical) $\frac{\Delta E}{E} \sim 10^{-4}$

(To prevent widening of the spontaneous radiation line)

• High peak current

The wakefields of short bunches

- Emittance growth
- Extra induced energy spread

^x′ Х Electron beam Photon beam

• Degradation of FEL process

Numerical Motivation

Numerical Motivation

SIBC in Time Domain

- K. S. Oh and J. E. Schutt-Aine, An Efficient Implementation of SIBC for the FDTD Method, IEEE Trans. Antennas Propagat., vol. 43, pp. 660–666, 1995.
- Riku M. Mäkinen, An Efficient SIBC for Thin Wires of Finite Conductivity, IEEE *Trans*. Antennas Propagat, vol. 52, pp. 3364-3372, 2004
- R. Mäkinen, T. Lau, E. Gjonaj, T. Weiland, Computation of Resistive Wakefield with the PBCI Code, Proceedings of EPAC08, Genoa, Italy, 2008, pp. 1753-1755

SIBC in Time Domain

SIBC in Time Domain

SIBC in Frequency Domain

Semi-Discrete Maxwell's Equations with SIBC

	$\left(\hat{e} \right)$) (0	$M_{\varepsilon}^{-1}C^{T}$	0	0	•••	0)	$\left(\hat{e} \right)$
$\frac{d}{dt}$	\widehat{h}	=	$-M_{\mu}^{-1}C$	0	$C_{\scriptscriptstyle B}$	$C_{\scriptscriptstyle B}$	•••	C_{B}	\widehat{h}
	0		0	$-\alpha_0$	1	0	•••	0	G_0
	G_1		0	$lpha_{_1}$	0	eta_1	•••	0	G_1
	•		÷	•	:	•	•••	÷	
	$\left(G_{N}\right)$		0	$lpha_{_N}$	0	0	•••	β_N	$\left(G_{N}\right)$

Boundary Effects

- M. Dohlus. TESLA report 2001-26, 2001
- K. Bane, G. Stupakov, SLAC-PUB-10707, 2004
- A. Tsakanian, M. Dohlus, I. Zagorodnov, TESLA-FEL-2009-05, 2009

Dispersion-Free Numerical Methods

- E. Gjonaj, T. Lau, W. Muller, T. Weiland and el., Large Scale Wake Field Computations for 3D-Accelerator Structures with the PBCI Code, Proceed. Of ICAP 06, Chamonix, France, 2006, pp. 9-34
- E. Gjonaj, T. Lau, T. Weiland, Wakefield Computation with the PBCI Code using a Non-Split Finite Volume Method, Proceedings of PAC09, Vancouver, Canada, 2009, pp. 4516-4518

Finite Volume Time Domain Method

Finite Volume Time Domain Method

Dispersion Properties of Numerical Methods

Applications

Resistive wake field calculations of ultra short bunches in various structures:

- Collimators
- Undulator beampipe (Elliptical)
- Undulator intersections
- Warm accelerating structures
- Multi-layer structures (check SIBC model)
- Etc.

Thank You for Your Attention!

PETRA cavity

