Photo Injector Test facility at DESY, Zeuthen site

PITZ: Simulations versus Experiment

Mikhail Krasilnikov (DESY, Zeuthen site) Darmstadt, 19.12.2013

- Emittance and brightness vs. bunch charge
- Emission area homogeneity
- Emittance vs. main solenoid current
- "Fin structure" investigations coaxial coupler kick?
- Photo emission studies various cathode laser temporal profiles
- Recent problem: gun cavity resonance temperature drift

Emittance versus Laser Spot Size for various Charges

Minimum emittance $(\sqrt{\varepsilon_{n,x}\varepsilon_{n,y}})$								
Charge, nC	Measured, mm mrad	Simulated, mm mrad						
2	1.25±0.06	1.14						
1	0.70±0.02	0.61						
0.25	0.33±0.01	0.26						
0.1	0.21±0.01	0.17						
0.02	0.121±0.001	0.06						

 Optimum machine parameters (laser spot size, gun phase): experiment ≠ simulations

- Difference in the optimum laser spot size is bigger for higher charges (~good agreement for 100pC)
- Simulations of the emission needs to be improved

Emittance and Brightness versus Bunch Charge

Cathode laser pulse duration was fixed at 21.5 ps (FWHM) for all bunch charges!

Emission Area Homogeneity

$S \leftrightarrow M$ versus main solenoid current (1nC)

S←→M versus main solenoid current (1nC)

But: →magnetizable girder →weak Cu diamagnetism Bmax→ Bmax*0.977

"Fin structure" investigations (Gun-4.3, not nominal setup)

Electron beam on HIGH1.Scr1 (EMSY, z=5.74m, Imain=363A)

booster on

booster off

[Ref] \rightarrow Report on Gun-4.3 conditioning at PITZ in 2013

Mikhail Krasilnikov | PITZ: Simulations versus Experiment | 19.12.2013 | Page 7

RF field asymmetry?

RF field asymmetry?

H-fields x-cut plane logarithmic -3.53e-05 + 2.16e-05 1.27e-05 -6.96e-06 -3.26e-06 --3.266-06 --6.96e-06 --1.27e-05 --2.16e-05 -3.53e-05 -Cutplane normal: 1.0.0 Cutplane position: Abs Component: 2D Maximum 3.526e-05 1299,9996 Frequency: 67.5

H-fields z-cut plane

MWS simulations: Igor Isaev

More detailed modeling/simulations are required...

Photoemission studies at PITZ: motivation

Discrepancy in simulated and experimentally produced bunch charge

Discrepancy in experimental and simulated optimum machine parameters:

- Laser rms spot size: 0.3mm(exp) vs. 0.4mm(sim)
- Main solenoid current ∆I(M-S)~9A
- RF gun phase: +6deg(exp) vs. ~0deg(sim) → field enhancement?
- Experiment → close to the SC limit!

> Discrepancy in electron beam transverse profile (e.g. at EMSY1)

Optimized photo injector → large fraction of the intrinsic cathode emittance in the overall emittance budget. (Slice) emittance formation → in the cathode vicinity!

Emission studies: Ecath·LaserSpotSize=const

Parameters in legend: (σ_{xy}^{laser} , $P_{rf,gun}$, LT)

 $\sigma _{xy}^{laser} = \sqrt{\sigma_x \cdot \sigma_y}$ - rms spot size of the cathode laser

 $P_{rf,gun}$ - peak rf power in the gun cavity

LT – laser transmission was always tuned to keep laser pulse energy constant

#	P _{rf,gun} , MW	σ ^{laser} , mm	LT, %	$\sqrt{P_{rf,gun}} \cdot \sigma_{xy}^{laser}$
1	6.49	0.302	57.0	0.769
2	5.99	0.312	52.6	0.764
3	5.45	0.327	48.2	0.763
4	5.00	0.341	43.8	0.762
5	4.55	0.361	39.5	0.770
6	3.99	0.382	35.1	0.762
Δ=	48%	- 24 %		STDEV=0.49%

Simultaneous variation of the rf field and the space charge density at the cathode by keeping the laser pulse energy and $E_{cath0} \cdot \sigma_{xy}^{laser}$ constant yields very similar extracted bunch charge for a rather wide range of the launch phase.

?From the parallel plate capacitor (PPC) model: $Q_{QE-lim,PPCM} = \pi \varepsilon_0 R^2 E_0 \sin \varphi_0 = \pi \varepsilon_0 R^2 E_{cath}$

Emission G-FT program (February 2013): main idea

Laser transverse distribution

- x 2 gun gradients (7.75MW and 4MW)
- x laser pulse energies (e-meter in tunnel 4;20;37nJ), same for the Gaussian and F-T profiles
- long. momentum measurements
- laser pulse energy (LT) scans for the MMMG phase

	7.75MW	4MW
Flat-top (17ps)	case 1	case 3
Short Gaussian (2.7ps)	case 2	case 4

x (mm)

Emission studies: Field enhancement and QE-limited charge

4

20

37

 $\phi_{eff} = 3.5 eV - 0.0379 \sqrt{E_{cath}(MV/m)}; \ \hbar\omega = 4.81 eV$

РІТ

1

5

9.25

Higher SCD → m<2

1.00

5.25

9.29

2169

11384

20152

Laser pulse energy (laser transmission) scans

SPPhase = MMMG phase

- The case of short Gaussian pulses and low gun gradient (4MW in the gun) → the strongest saturation of the charge production due to a stronger space charge effect.
- The lowest space charge density case (– the flat-top and 7.75MW in the gun) → the most linear charge production curve.
- It is interestingly enough the closeness of curves for the 4MW gun power and flat-top laser pulse to the dependence for 7MW and the short Gaussian pulse:
 - projected space charge density for these two cases is different (in a factor of ~6)
 - rf fields at the moment of emission is different (29MV/m for 4MW and 45MV/m for 7.75MW).

Laser transverse halo modeling-1: fitting measurements

The overall χ^2 of the fit is 59.2, the reduced chi-squared statistic yields $\chi^2_{red} = \frac{\chi^2}{\nu} = 0.79$, where the number of degrees of freedom $\nu = N_{points} - N_{fit.par.} - 1 = 75$.

Laser transverse halo modeling-2: fitting measurements

Laser temporal profile	rf peak power	ξ	η	QE	Q _{max}	$\chi^2 = \sum \frac{(meas - fit)^2}{meas.error^2}$
Flat-top (17ps)	7.75MW	0.98	1.17	8.36%	673pC	21.5
Short Gaussian (2.7ps)					445pC	16.7
Flat-top (17ps)	4.0MW			8.01%	432pC	5.2
Short Gaussian (2.7ps)					285pC	10.1

 $\frac{\rho_{scl}(flat-top)}{\rho_{scl}(Gaussian)} \approx 1.51$

The overall χ^2 of the fit is 53.5, the reduced chi-squared statistic yields $\chi^2_{red} = \frac{\chi^2}{\nu} = 0.73$, where the number of degrees of freedom $\nu = N_{points} - N_{fit.par.} - 1 = 73$.

Recent problem: gun cavity resonance temperature drift

The resonance temperature drift/variation of ~4degC over two months of conditioning seems to be real:

- The same temperature difference observed at various gun iris sensors
- There is a direct linear correlation of the gun iris temperature with temperature of input and output water channels
- Water flow is almost constant for the monitoring measurements
- Estimated heat transfer is constant within error bars
- Cathode re-insertion/exchange experiments show that these manipulations cannot explain the observed temperature drift

Conclusions

- PITZ

 for theoretical understanding of the photo injector physics (beam dynamics simulations vs. measurements)
 - rather good agreement on emittance minima between measurements and simulations
 - optimum machine parameters: simulations ≠ experiment
 - simulations of the emission needs to be improved
- Fin structure" investigations → asymmetry in RF fields in gun cavity due to the coaxial coupler kick has to be modelled and simulated in more details. Also more dedicated measurements? Any ideas are welcomed!
- > Photoemission studies at PITZ:
 - Key to understand the M-S discrepancies
 → more precise modelling of the photoemission
 is needed (intrinsic cathode emittance formation)
 - Important for further optimization (e.g. 3D ellipsoidal pulses)
 - Recent studies using short Gaussian and long flattop cathode laser pulses:
 - transient effect \rightarrow depends on the laser temporal profile (parallel plate capacitor model)
 - field enhancement determined also by the peak field as well as by the space charge
- > Long-term drift of the gun resonance temperature \rightarrow cavity deformations?

