Emission Modeling for PITZ

Erion Gjonaj TU Darmstadt, TEMF

> TEMF-DESY Collaboration Meeting December 19th, 2013

Contents

- Introduction
- SPCH simulations in the gun
 - Lienard-Wiechert PP simulations
 - DG-PIC simulation
 - CST PS PIC simulations
 - Comparison
- Emittance results at the EMSY1
- Transverse spot inhomogeneities
- Space charge limits
- Conclusions

- Large differences are found between measurement and simulation optimum emittance vs. spot size, spch limit, ...
- Find source of discrepancy on simulation side

M. Krasilnikov, FEL 2013

- Hypothesis 1: problems originate at the cathode / gun
- Hypothesis 2: <u>beam dynamics</u> at emission time not properly modeled

Particle velocities at emission time

Inertial frame codes (Astra, Parmela, ...)

- Relative particle motion neglected
- Retardation effects (partially) omitted
- No acceleration radiation

Full EM simulations

- Particle-Particle (PP) codes
- Particle-In-Cell (PIC) codes

Lienard-Wiechert PP

Dicontinuous Galerkin (DG) PIC

Dicontinuous Galerkin (DG) PIC

- Beam dynamics over short distance (up to 2cm behind cathode)
 - Sufficient to observe possible issues at emission time
 - Analyze numerical convergence
 - Identify numerical parameters for full-scale simulations
 - Perform comparison between different approaches
 - Estimate space charge limits
 - 3D-simulations throughout the following (except for Astra)
 - Nom. parameters/ PITZ-1.8: Q = 1nC, FWHM: 20/2 ps, XY_rms = 0.4mm, ...

LW-PP convergence

DG-PIC convergence

CST PS (PIC) performance

CST PS (PIC) performance

Comparison

Comparison

Comparison for other bunches (Q = 1nC)

Origin of discrepancy

$$\mathbf{E} = \frac{q}{4\pi\varepsilon_0} \left[\frac{(\mathbf{n} - \boldsymbol{\beta}) (1 - |\boldsymbol{\beta}|^2)}{(1 - \boldsymbol{\beta} \cdot \mathbf{n})^3 R^2} + \frac{\mathbf{n} \times (\mathbf{n} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}}{(1 - \boldsymbol{\beta} \cdot \mathbf{n})^3 R} \right]_{t=t_r}, \quad \mathbf{B} = \frac{1}{c} \mathbf{n} \times \mathbf{E} \Big|_{t=t_r} \quad \text{single particle fields}$$

Hierarchy of approximations		retardation	contraction	radiation	relative motion
$\beta = 0$	E-statics (ES)	—	_	_	-
$\beta^2 \ll 1$	E-statics / B-statics (ES-MS)	-	_	_	+
$\beta = \text{const.}$	bunch in uniform motion / average frame (UMAF)	Ŧ	Ŧ	_	_
$\frac{\partial\beta}{\partial t} = 0$	individual particles in uniform motion / local frame (UMLF)	Ŧ	Ŧ	_	+

Origin of discrepancy

Emittance at EMSY1

Emittance at EMSY1

Emittance at EMSY1

Transverse Spot Inhomogeneities

Transverse Spot Inhomogeneities

Emittances up to 7cm

Charge extraction $- Q_bunch = 1nC$

Conclusions

- Modeling errors exist in Astra simulations
 - charge expansion effects at the cathode are neglected
 - projected emittance is overestimated: ~20% off at 1nC / 0.4mm
 - Predicted SPCH limits are lower than should be if source limited emission is assumed
- But, systematic shift in the optimal parameters (spot size) cannot be explained by these "numerical problems"
- The emission regime is yet unclear
 - If spch limitation occurs (partially) completely different beam dynamics is to be expected

Thank you for your attention