Methods 000000

DISPERSION BASED BEAM TILT CORRECTION

Marc Guetg

Paul Scherrer Institut

December 17, 2013

PSI

• HIPA

PSI

- HIPA
- SINQ

PSI

• HIPA

• SLS

PSI

- HIPA
- SINQ

- SLS
- SwissFEL

Methods 000000 Results

SwissFEL

SwissFEL

Operation mode

- Undulator period 15 mm
- Saturation pulse energy 60 μJ
- Saturarion power 2 GW
- ø brightness $2 \cdot 10^{21} \ \# photons/mm \cdot mrad^2 \cdot s \cdot 0.1\%$ bandwidth

Methods

Operation parameters

	Short pulse	Long pulse	Large bandwidth
Charge [pC]	10	200	200
σ_z [fs]	2	25	22
Compression	533	125	-136
$\varepsilon_{\sf slice}$ [nm]	180	430	430
Peak current [A]	830	3000	3970

Methods 000000

SwissFEL injector test facility

- Test procedures
- Test components

Slice centroid oscillation reduces overlap between electron and radiation

• Reduces FEL performance

Increases spot size $\rightarrow \varepsilon_{projected}$

Discrepancy between ε_{projected} and ε_{slice} increases

Methods 000000

Correction of centroid misalignment

Source

• Kick: $x'_c(z)$

Methods 000000

- Kick: $x'_c(z)$
- Propagate: x'_c(z) & x_c(z)

Methods 000000

- Kick: $x'_c(z)$
- Propagate: $x'_c(z) \& x_c(z)$
- Energy chirp $p \rightarrow z$

- Kick: $x'_c(z)$
- Propagate: $x'_c(z) \& x_c(z)$
- Energy chirp $p \rightarrow z$
- Dispersion $x \rightarrow z$

Methods 000000

Methods 000000

Methods 000000

Methods 000000

- Phase jitter
- Amplification trough BC

Methods 000000

- Phase jitter
- Amplification trough BC
- Analogue for amplitude jitter

Methods 000000

- Phase jitter
- Amplification trough BC
- Analogue for amplitude jitter
- Charge jitter leads to energy jitter

Methods 000000

Energy induced orbit jitter

- Phase jitter
- Amplification trough BC
- Analogue for amplitude jitter
- Charge jitter leads to energy jitter

• Leaking dispersion from correction

•
$$R_{56} = \int_{BC} \frac{\eta}{\rho} ds$$

$$\frac{x_c'(z)}{\sigma_{x'}} + \frac{x_c(z)}{\sigma_x} \cdot i = \sum_{n=0}^{\infty} \chi_n \left(\frac{z}{\sigma_z}\right)^n$$

- Taylor expansion of slice offset x_c(z) and angle x'_c(z)
- Combine both series into complex values

Methods 000000

$$\frac{x_c'(z)}{\sigma_{x'}} + \frac{x_c(z)}{\sigma_x} \cdot i = \sum_{n=0}^{\infty} \chi_n \left(\frac{z}{\sigma_z}\right)^n$$

- Taylor expansion of slice offset x_c(z) and angle x'_c(z)
- Combine both series into complex values
- Zero order
 - Orbit

Methods 000000

$$\frac{x_c'(z)}{\sigma_{x'}} + \frac{x_c(z)}{\sigma_x} \cdot i = \sum_{n=0}^{\infty} \chi_n \left(\frac{z}{\sigma_z}\right)^n$$

- Taylor expansion of slice offset x_c(z) and angle x'_c(z)
- Combine both series into complex values
- Zero order
 - Orbit
- First order
 - Linear tilt

Methods 000000

$$\frac{x_c'(z)}{\sigma_{x'}} + \frac{x_c(z)}{\sigma_x} \cdot i = \sum_{n=0}^{\infty} \chi_n \left(\frac{z}{\sigma_z}\right)^n$$

- Taylor expansion of slice offset x_c(z) and angle x'_c(z)
- Combine both series into complex values
- Zero order
 - Orbit
- First order
 - Linear tilt
- Second order
 - Quadratic tilt

Methods 000000

Optics perturbation through χ_1

•
$$\tilde{\varepsilon} = \varepsilon \sqrt{1 + |\chi_1|^2 \cdot (1 + \alpha^2) + 2\alpha \cdot \sqrt{1 + \alpha^2} \cdot \operatorname{Re}(\chi_1) \cdot \operatorname{Im}(\chi_1)}$$

•
$$\alpha = 0 \rightarrow \tilde{\varepsilon} = \varepsilon \cdot \sqrt{1 + |\chi_1|^2}$$

Influences optics

• off
$$= 0 \rightarrow V_x = 0$$

$$V_x(s) = \int\limits_{-\infty}^{s} W_x(s-s') \cdot off_x(s') \cdot \lambda(s') ds'$$

- off = $0 \rightarrow V_x = 0$

Source: Transverse wakefields

Source: Transverse wakefields

- off $= 0 \rightarrow V_x = 0$
- off $\neq 0 \rightarrow V_x \neq 0$
- Defocussing

$$V_x(s) = \int\limits_{-\infty}^s W_x(s-s') \cdot \textit{off}_x(s') \cdot \lambda(s') ds'$$

Source: Coherent Synchrotron Radiation

Incoherent Synchrotron Radiation

• Independent on current profile

Source: Coherent Synchrotron Radiation

Incoherent Synchrotron Radiation

• Independent on current profile

Coherent Synchrotron Radiation

- Longitudinal dependent energy loss
- Dispersion varies effectively along bunch
- Transverse kick of recaptured synchrotron light

Methods •00000

Beamsize along at the SITF

- Dominated by $^1\eta$ in the BC
- $^{2}\eta$ contribution is negligible

- Matched
- Normal (10x) compression
- Linear longitudinal phase space

Methods 000000

Magnets in dispersive section

Ideal, zero length magnets

Magnets in dispersive section

Ideal, zero length magnets

• ${}^{1}\eta_{x}/{}^{1}\eta_{x'} \neq 0$ • ${}^{1}\eta_{y}/{}^{1}\eta_{y'} \sim 0$

• ${}^{2}\eta_{x}/{}^{2}\eta_{x'} \sim 0$

Magnets in dispersive section

Methods 00000

Ideal, zero length magnets

• ${}^{1}\eta_{x}/{}^{1}\eta_{x'} \neq 0$ • ${}^{1}\eta_{\nu}/{}^{1}\eta_{\nu'}\sim 0$ • ${}^{2}n_{x}/{}^{2}n_{x'} \neq 0$

Magnets in dispersive section

Ideal, zero length magnets

• ${}^{1}\eta_{x}/{}^{1}\eta_{x'} \sim 0$ • ${}^1\eta_y/{}^1\eta_{y'} \neq 0$ • ${}^{2}n_{x}/{}^{2}n_{x'} \sim 0$

- Skew quadrupole magnet
 - Analogue

Methods 00000

Magnets in dispersive section

Ideal, zero length magnets

- Skew quadrupole magnet
 - Analogue

• Operator can only observe x - y

- Operator can only observe x y
- x z is not measurable

- Operator can only observe x y
- *x z* is not measurable
- Accelerate in y with RF

- Operator can only observe x y
- x z is not measurable
- Accelerate in y with RF
- Use longitudinal energy dependence combined with dispersion

Method to measure χ

Methods

- Streak
- Scan phase advance
- Normalize
- Correlate
- Reconstruct at one point

Introduction 00000 00000 00	Methods 0000€0	Results 0000 00 0
	Algorithm	

- Measure
 - Optics
 - Momentum
 - $<\delta>$
- Streak
 - Minimize mismatch

- Knobs in the bunch compressor
 - Quadrupole
 - Sextupole
 - Skew quadrupole
- Penalty for several phase advances
 - 1. & 2. order x z correlation
 - Chromaticity
- Correct mismatch

Introduction 00000 00000 00	Methods 0000€0	Results 0000 00 0
	Algorithm	

- Use pseudo inverse
- Apply changes

Introduction 00000 00000 00	Methods 0000€0	Results 0000 00 0
	Algorithm	

- Remove streak
- Rematch
- Check compression

Introduction	Methods	Results
00000	000000	0000
00000		00
00		0

Algorithm

• Iterate process

Introduction	Methods	Results
00000	000000	0000
00		0

Algorithm

- Iterate process
- Reuse perturbation matrix

Introduction	Methods	Results
00000 00000 00	000000	0000

Algorithm

- Iterate process
- Reuse perturbation matrix
- Very robust
 - Optics mismatch
 - Machine drifts

GUI

When:	Tue 30-Jul-13 19:21
Author:	CSR
Entry:	Measurement
System:	MATLAB
Title:	KillCSR
inichad nun aftar 414 c	

build 24.7.3

Magnets

Name	Current [A]
F10BC-MQUA10	-2.64e-01
F10BC-MQUA20	-1.40e-01
F10BC-MSQU10	0.00e+00
F10BC-MSQU20	0.00e+00

Penalties

Index	Initial	Final
1	-1.61e-01 ± 1.66e-02	-7.07e-03 ± 5.02e-03
2	-1.52e-01 ± 1.92e-02	5.58e-03 ± 5.06e-03
3	-1.60e-01 ± 1.46e-02	8.03e-04 ± 4.72e-03
4	-1.18e-01 ± 8.95e-03	1.88e-03 ± 2.15e-03
5	-2.77e-02 ± 1.85e-03	8.74e-03 ± 3.40e-03
Bunch length	1.00e+00 ± 0.00e+00	1.02e+00 ± 3.89e-02

Options

Option	Value
Mode	QTDC×
E (MeV)	180.00
Matching	0.00
#PM	3.00
Streak	2.70
Stepsize	0.04
Stepreduction	1.50
Reuse PM	1.00
Start@0	1.00
Cycle	0.00
No artifact	1.00
#Pictures	10.00
Noisecut	0.30
Threshold	0.20

KillCSR

-5 0 5 y (mm)

Control
Run
Options
Unmatch

GR84 - build 24.7.3

This figure can be accessed here: /afs/psi.ch/intranet/FIN/Data/FIN250-Phase3X/2013-07-30/KillCSR2013.07.30-19.14._Figure001.fig

Raw data can be found here: /afs/psi.ch/intranet/FIN/Data/FIN250-Phase3X/2013-07-30/killCSR2013.07.30-19.14.26*

Methods 000000 Results

Setup for sensitivity study

Monte Carlo simulations for combined jitter sources

- Charge ($\sigma_Q/Q = 0.1$)
- RF phase ($\sigma_{\phi} = 0.05^{\circ}$)
- RF amplitude ($\sigma_A/A = 0.0018$)

Methods 000000

RF and laser stability

Simulations for SwissFEL

- Orbit jitter low
- Bunch length jitter negligible
- Current profile jitter negligible

Methods 000000

Tilt sources

- CSR (3 Stages)
- Wakefields (X- & C-Band)

Knobs in BC1 & BC2

- 2x2 Quadrupole
- 2x2 Skew quadrupole
- 2x2 Sextupole

Methods

Simulation results

Simulations using elegant

- Clear reduction for all cases
- Higher order modes still uncorrected

Setup of SwissFEL Injector Test Facility

Key features

- Moveable bunch compressor
- Moveable X-Band cavity

Setup of SwissFEL Injector Test Facility

Key features

- Moveable bunch compressor
- Moveable X-Band cavity

Streaking

• Transverse deflection cavity

Setup of SwissFEL Injector Test Facility

Key features

- Moveable bunch compressor
- Moveable X-Band cavity

Streaking

- Transverse deflection cavity
- Skew quadrupole within BC

Setup of SwissFEL Injector Test Facility

Key features

- Moveable bunch compressor
- Moveable X-Band cavity

Streaking

- Transverse deflection cavity
- Skew quadrupole within BC
- Quadrupole within BC PAUL SCHERRER INSTITUT

Setup of SwissFEL Injector Test Facility

Key features

- Moveable bunch compressor
- Moveable X-Band cavity

Streaking

- Transverse deflection cavity
- Skew quadrupole within BC
- Quadrupole within BC PAUL SCHERRER INSTITUT

Measurement results

-FE)-

Methods 000000

Summary

- Introduction of χ
- Very robust tilt correction procedure
- Relevant reduction of χ and ε
- Works simultaneously in both transversal planes

Thank you for your attention

My special thanks to

- Sven Reiche
- Bolko Beutner
- Eduard Prat
- Masamitsu Aiba
- Simona Bettoni
- Hans Braun
- Marco Pedrozzi
- Thomas Schietinger
- All technical groups involved at the SITF

Methods 000000

Optics with χ

For
$$\chi = \chi_0 + \chi_1$$

• Beam size
• $\tilde{\sigma}_x = \sigma_x \sqrt{1 + \operatorname{Im}(\chi_1)^2}$
• $\tilde{\sigma}_{x'} = \sigma_{x'} \sqrt{1 + \operatorname{Re}(\chi_1)^2}$
• $\tilde{\varepsilon} = \varepsilon \sqrt{1 + |\chi_1|^2 \cdot (1 + \alpha^2) + 2\alpha \cdot \sqrt{1 + \alpha^2} \cdot \operatorname{Re}(\chi_1) \cdot \operatorname{Im}(\chi_1)}$
• Optics
• $\tilde{\alpha} = \frac{\varepsilon}{\tilde{\varepsilon}} \left(\alpha - \sqrt{1 + \alpha^2} \cdot \operatorname{Re}(\chi_1) \cdot \operatorname{Im}(\chi_1) \right)$
• $\tilde{\beta} = \beta \sqrt{\frac{1 + \tilde{\alpha}}{1 + \alpha} \cdot \frac{1 + \operatorname{Im}(\chi_1)^2}{1 + \operatorname{Re}(\chi_1)^2}}$
• $\tilde{\gamma} = \gamma \sqrt{\frac{1 + \tilde{\alpha}}{1 + \alpha} \cdot \frac{1 + \operatorname{Re}(\chi_1)^2}{1 + \operatorname{Im}(\chi_1)^2}}$

• Transfer for frozen longitudinal phase space

•
$$\binom{\mathsf{Im}(\chi_1)}{\mathsf{Re}(\chi_1)} = (\sqrt{\beta_0}\sqrt{\gamma_0}) \otimes \left(\sqrt{\frac{1}{\beta}} \sqrt{\frac{1}{\gamma}}\right) \circ R \cdot \binom{\mathsf{Im}(\chi_{1,0})}{\mathsf{Re}(\chi_{1,0})}$$

- K. Bane, "Short-range Dipole Wakefields in Accelerating Structures for the NLC", SLAC-PUB-9663, 2003
- M. Borland, "elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation", Advanced Photon Source LS-287, 2000.
- D. Edwards, "An Introduction to the Physics of High Energy Accelerators", Wiley-vch, 2004.

