Seeding FLASH between 4 and 40 nm

Kirsten Hacker, TU Dortmund

FLASH1 Seeding Collaboration

Outline

- HGHG seeding limits at FLASH
- EEHG seeding limits at FLASH
- Cascaded seeding limits at FLASH
- Seeding at other labs
- A proposed layout for FLASH2
- Conclusion

All simulations are 1-D 3-D effects are estimated

Seeded FEL

- More intense and monochromatic radiation
- Shorter undulator required

 $\Delta \Lambda \Lambda \Lambda$

Seeded FEL

• Convenient for pump-probe experiments

Types of external seeding

- HHG direct seeding
- HGHG seeding
- EEHG seeding
- Modulate ╞┓╸╢╢ Energy Energy Fold cascading

HGHG seeding High Gain Harmonic Generation

HGHG limit at FLASH2

HGHG limit at FLASH2

CSR and LSC 4 MeV microbunch after 4 meters

100 μ m (rms) beam radius 1kA initial peak current R₅₆ of chicane = 45 μ m 700 MeV beam energy

Only small degradation in bunching But – energy spread is too big

CSR and LSC

2MeV microbunch after 4 meters

CSR and LSC 2MeV microbunch after 4 meters

$$Z_{LSC}(k) = \frac{iZ_0}{\pi k r_b^2} \left[1 - \frac{kr_b}{\gamma} K\left(\frac{kr_b}{\gamma}\right) \right]$$

FLASH2 beamline

Caveats:

- 1). The saturation point has to be at a fixed position in the undulator
- 2). For long wavelengths, the saturation point has to be at the end
- 3). Transport the bunched or modulated beam over 30 m
- 4). Quad focusing might reduce the bunching due to T_{126} effects.
- 5). Everything not yet considered.

Dispersion in 30 meter Drift

- $R_{56} \sim L_{drift} / \gamma^2 = 15 \ \mu m \sim 700 \ MeV$
- $R_{56} \sim L_{drift}^* \theta^2 < 3 \text{ nm} \sim \text{worst case 100 } \mu\text{m}$
- $T_{126} \sim I_{bend}$ (sextupole moment)
 - $R_{11} \sim \cos\theta = 1$
 - $R_{12} \sim \theta / I_{bend} \sin(\theta / I_{bend}) = 0$
 - $R_{16} \sim 2^* R_{56}^* \theta = 0$

Dispersion required to bunch seeded microbunch is:

20 μ m for too-large 4 MeV modulation 50 μ m for smaller 2 MeV modulation >50 μ m for smaller modulations

LSC over 20 meters

$$Z_{LSC}(k) = \frac{iZ_0}{\pi k r_b^2} \left[1 - \frac{kr_b}{\gamma} K \left(\frac{kr_b}{\gamma} \right) \right]$$

100 µm (rms) beam radius

Increase beam diameter to remove LSC problem

Bonus: no CSR because beam was compressed in drift

EEHG limit at FLASH2

EEHG doesn't tolerate LSC

EEHG tolerates CSR

EEHG-HHG limit at FLASH2

Cascaded seeding at FLASH2

Seeding at other labs

SINAP

- EEHG at 300 nm, but moving very fast

• SLAC (NLCTA)

– EEHG at 170 nm (14th harmonic)

- ELLETRA (FERMI)
 - HGHG down to 19 nm
 - HGHG cascade down to 4 nm

Why not copy FERMI?

Low peak current Low charge Low energy spread No SASE Less pulse energy Low rep-rate Laser heater Radiator for cascade High peak current High charge Big energy spread SASE More pulse energy High rep-rate No laser heater Radiator for SASE Photor

FEL Experiment

Seeding performance 150 keV energy spread

Seeding performance 150 keV energy spread

- EEHG has the highest tolerance of a bad slice energy spread
- The HGHG-only FLASH2 design is limited in performance to 150 keV energy spreads and 30 nm minimum wavelengths
- The more flexible design for FLASH2 offers more ways to seed from 4-40 nm and with a larger tolerance of the slice energy spread

X-Band Transverse Deflecting Structure for FLASH2

(addendum)

• giving users information about the longitudinal profile of the FEL pulse for each bunch train

- R&D for LAOLA ultra-short bunch diagnostics
- commissioning the FLASH II extraction line
- operating any seeding experiments
 - energy modulation diagnostic

Images from C. Behrens

Thank you for your time