Longitudinal bunch profile reconstruction using CRISP4 spectrometer

Eugen Hass², Christopher Gerth¹, Bernhard Schmidt¹, Stephan Wesch¹, Minjie Yan¹

> ¹ DESY Hamburg ² University of Hamburg

FEL seminar 2013

Outline

- Introduction
- Setup
- Profile reconstruction
- Measurements
- Comparison with TDS
- Summary

Longitudinal diagnostic stations at FLASH Introduction

Longitudinal diagnostic stations at FLASH Introduction

Coherent Radiation Intensity Spectrometer with 4 stages

Coherent radiation

Introduction

- Charged particle emits electromagnetic radiation
 - Transition radiation, diffraction radiation, synchrotron radiation etc.
- A bunch of N charged particles emits radiation with Intensity $U(\lambda, \Omega)$
 - Superposition of the fields \vec{E} from the individual electrons
- Emission characteristics

 $\lambda \ll \sigma_{long}$: incoherent emission $ec{E} \propto \sqrt{N}
ightarrow U \propto N$

 $\lambda \gg \sigma_{long}$: coherent emission $\vec{E} \propto N \rightarrow U \propto N^2$

• Strong increase in intensity ($N \approx 10^9$)

Coherent radiation of relativistic electron bunches

Spectral-angular distribution of coherent radiation

$$\frac{\mathrm{d}^2 U}{\mathrm{d}\lambda \,\mathrm{d}\Omega} \approx \frac{\mathrm{d}^2 U_1}{\mathrm{d}\lambda \,\mathrm{d}\Omega} N^2 |F_{3D}(\lambda,\Omega)|^2 \qquad \text{with} \qquad \qquad F_{3D}(\lambda,\Omega) = \int_{-\infty}^{\infty} \rho_{3D}(\vec{\mathbf{r}}) \,\exp(-i\,\vec{\mathbf{k}}\,\vec{\mathbf{r}}) \,d\vec{\mathbf{r}}$$

- Approximations
 - No longitudinal and transversal correlation: $F_{3D}(\lambda, \Omega) = F_{long}(\lambda, \Omega) F_{trans}(\lambda, \Omega)$
 - Small observation angle: $F_{long}(\lambda, \Omega) \approx F_{long}(\lambda)$
- Coherent spectral intensity becomes

$$\frac{\mathrm{d}U}{\mathrm{d}\lambda} \approx \left[\int_{\Omega_{det}} \frac{\mathrm{d}^2 U_1}{\mathrm{d}\lambda \,\mathrm{d}\Omega} F_{trans}(\lambda,\Omega) \mathrm{d}\Omega\right] N^2 \left|F_{long}(\lambda)\right|^2$$

Longitudinal formfactor

$$F_{long}(\lambda) = \int_{-\infty}^{\infty} \rho_{long}(z) \exp(-2\pi i z/\lambda) \, \mathrm{d}z$$

Coherent radiation of relativistic electron bunches

· Spectral-angular distribution of coherent radiation

$$\frac{\mathrm{d}^2 U}{\mathrm{d}\lambda \,\mathrm{d}\Omega} \approx \frac{\mathrm{d}^2 U_1}{\mathrm{d}\lambda \,\mathrm{d}\Omega} N^2 |F_{3D}(\lambda,\Omega)|^2 \qquad \text{with} \qquad \qquad F_{3D}(\lambda,\Omega) = \int_{-\infty}^{\infty} \rho_{3D}(\vec{\mathbf{r}}) \,\exp(-i\,\vec{\mathbf{k}}\,\vec{\mathbf{r}}) \,d\vec{\mathbf{r}}$$

- Approximations
 - No longitudinal and transversal correlation: $F_{3D}(\lambda, \Omega) = F_{long}(\lambda, \Omega) F_{trans}(\lambda, \Omega)$
 - Small observation angle: $F_{long}(\lambda, \Omega) \approx F_{long}(\lambda)$
- Coherent spectral intensity becomes

$$\frac{\mathrm{d}U}{\mathrm{d}\lambda} \approx \left[\int_{\Omega_{det}} \frac{\mathrm{d}^2 U_1}{\mathrm{d}\lambda \,\mathrm{d}\Omega} F_{trans}(\lambda,\Omega) \mathrm{d}\Omega\right] N^2 \left|F_{long}(\lambda)\right|^2$$

Longitudinal formfactor

$$F_{long}(\lambda) = \int_{-\infty}^{\infty} \rho_{long}(z) \exp(-2\pi i z/\lambda) \, \mathrm{d}z$$

Measurement of absolute intensity of coherent radiation allows determination of absolute value of the formfactor

Formfactor examples

Introduction

· Gaussian profile

Rectangle profile

Principle

Coherent Radiation Intensity Spectrometer with four gratings (CRISP4)

Courtesy of S.Wesch

Setup CRISP4

Courtesy of S.Wesch

- Five consecutive gratings as prefilter and dispersive devices
- Wavelength coverage from 5.5 to $440 \mu m$ with two sets of gratings
 - MIR configuration: 5.5 to 44µm
 - FIR configuration: 44 to 440µm
- One order of magnitude in λ for four gratings
- Parallel readout of 120 channels for one set of gratings

Spectrometer model CRISP4

$$S_{SP4}(\lambda) = Q^2 R_{\delta}(\lambda) \left| F_{long}(\lambda) \right|^2 \to \left| F_{long}(\lambda) \right| = \sqrt{\frac{S_{SP4}(\lambda)}{Q^2 R_{\delta}(\lambda)}}$$

Spectrometer model CRISP4

$$S_{SP4}(\lambda) = Q^2 R_{\delta}(\lambda) |F_{long}(\lambda)|^2 \rightarrow |F_{long}(\lambda)| = \sqrt{\frac{S_{SP4}(\lambda)}{Q^2 R_{\delta}(\lambda)}}$$

Detailed knowledge of the whole setup is needed

Spectrometer model CRISP4

$$S_{SP4}(\lambda) = Q^2 R_{\delta}(\lambda) \left| F_{long}(\lambda) \right|^2 \to \left| F_{long}(\lambda) \right| = \sqrt{\frac{S_{SP4}(\lambda)}{Q^2 R_{\delta}(\lambda)}}$$

Detailed knowledge of the whole setup is needed

- Response function includes
 - CTR source

•

- Diamond window
- Beamline transmission
- Transmission of the polarizer
- Spectrometer transmission
- Focus profile
- Detector size
- Grating efficiency
- Detector sensitivity
- Electronic amplifiers

Pyro response CRISP4

Measurements CRISP4

Measurements CRISP4

Complex Formfactor

 $F_{long}(\lambda) = |F_{long}(\lambda)| \exp(i\phi(\lambda))$

Complex Formfactor

 $F_{long}(\lambda) = |F_{long}(\lambda)| \exp(i\phi(\lambda))$

• We can measure $|F_{long}(\lambda)|$ but $\exp(i\phi(\lambda))$ remains unknown

Complex Formfactor

$$F_{long}(\lambda) = |F_{long}(\lambda)| \exp(i\phi(\lambda))$$

- We can measure $|F_{long}(\lambda)|$ but $\exp(i\phi(\lambda))$ remains unknown
- · Kramers-Kronig relation connects real and imaginary part for a certain type of functions

Complex Formfactor

$$F_{long}(\lambda) = |F_{long}(\lambda)| \exp(i\phi(\lambda))$$

- We can measure $\left|F_{long}(\lambda)\right|$ but $\exp(i\,\phi(\lambda))$ remains unknown
- · Kramers-Kronig relation connects real and imaginary part for a certain type of functions
- Reconstructed phase

$$\phi_{\min}(\lambda) = -\frac{2\lambda}{\pi} \int_0^\infty \frac{\ln(\left|F_{long}(\lambda')\right|) - \ln(\left|F_{long}(\lambda)\right|)}{(\lambda'^2 - \lambda^2)} \, \mathrm{d}\lambda'$$

Reconstruction

$$\rho_{long,min}(z) = -\frac{2}{\lambda^2} \int_0^\infty \left| F_{long}(\lambda) \right| \cos(\frac{2\pi z}{\lambda} - \phi_{min}(\lambda)) \, \mathrm{d}\lambda$$

Complex Formfactor

$$F_{long}(\lambda) = |F_{long}(\lambda)| \exp(i\phi(\lambda))$$

- We can measure $\left|F_{long}(\lambda)\right|$ but $\exp(i\phi(\lambda))$ remains unknown
- · Kramers-Kronig relation connects real and imaginary part for a certain type of functions
- Reconstructed phase

$$\phi_{\min}(\lambda) = -\frac{2\lambda}{\pi} \int_0^\infty \frac{\ln(\left|F_{long}(\lambda')\right|) - \ln(\left|F_{long}(\lambda)\right|)}{(\lambda'^2 - \lambda^2)} \, \mathrm{d}\lambda'$$

Reconstruction

$$\rho_{long,min}(z) = -\frac{2}{\lambda^2} \int_0^\infty \left| F_{long}(\lambda) \right| \cos(\frac{2\pi z}{\lambda} - \phi_{min}(\lambda)) \, \mathrm{d}\lambda$$

- Reconstructed profile is not unique
- Needs a wide range of $|F_{long}(\lambda)| \rightarrow$ extrapolation needed

Reconstruction of known profiles CRISP4

Reconstruction examples CRISP4

Reconstruction examples CRISP4

Reconstruction from measurements CRISP4

Comparison with measurements in time domain TDS setup

- · direct temporal single shot measurement
- resolution depends on streak power and machine optics
- reliable measurements needs measurement with both streak directions

Status: February 2013 CRISP4

Long wavelengths response CRISP4

Influence on reconstructed profiles CRISP4

Comparison with TDS in time domain CRISP4

CRISP4 as a STANDARD!!! diagnostic tool in control room

Summary

- CRISP 4 can measure $|F_{long}(\lambda)|$ from 5.5 to 440 μm
- · Measurements down to 50 pC are possible for sufficiently short bunches
- Calibration above 110µm using TDS in progress
- CRISP4 can be used as an online diagnostic and monitoring tool in control room
- A good agreement between reconstructed temporal profiles and direct temporal measurement with TDS is found

Summary

- CRISP 4 can measure $|F_{long}(\lambda)|$ from 5.5 to 440 μm
- Measurements down to 50 pC are possible for sufficiently short bunches
- Calibration above 110µm using TDS in progress
- CRISP4 can be used as an online diagnostic and monitoring tool in control room
- A good agreement between reconstructed temporal profiles and direct temporal measurement with TDS is found

