About Micro Bunching Investigation for DOGLEG with Longitudinal Dispersion

Remark: Micro Bunching in FLASH

LGM (= linear gain model using integral equation method)

XFEL bunch Compression System

DOGLEG without Sextupoles

Working Points

Detailed Comparison for 0.1 nC Working Point

Results and Comparison

Remark: Micro Bunching in FLASH

f.i. 1st October 2010, 02:20

micro-bunching increases energy spread and affects emittance example: energy spread $\delta E \approx e\tilde{I} \int Z' dz$

XFEL, from BC1 (@ 500 MeV) to BC2 (@ 2 GeV)

LGM (= linear gain model using integral equation method)

$$G(B) = G^{(0)}(B) + \int_{0}^{B} K(B,S)G(S)dS$$

$$G^{(0)}(B) = H(kL(B)) \qquad \text{(local) current}$$

$$K(B,S) = -j\overline{q_{B\leftarrow S}^{(56)}}k(B)\frac{I(S)Z'(S)}{E_{ref}(S)/e}H(k(L(B) - L(S)))$$
emittance
optics
$$Z'(\omega, S) = Z'(\omega, parameters(S))$$
longitudinal impedance
chirp

$$H(V) = \int dx_0 dx'_0 d\eta_0^{(u)} \times \underbrace{\psi_{\perp}(x_0, x'_0)}_{\eta_0} \underbrace{\psi_{\eta}(\eta_0^{(u)})}_{\eta_0^{(u)}} \exp \left(\underbrace{\int V^t \begin{pmatrix} x_0 \\ x'_0 \\ \eta_0^{(u)} \end{pmatrix} \right)$$

transverse longitudinal phase space laser heater

XFEL Bunch Compression System

DOGLEG without Sextupoles

Working Points (from Beam Dynamics Homepage, Jan 2010)

Choosing of machine parameters

Macro-parameters

Charge Q, nC	$\begin{array}{c} \text{Momentum} \\ \text{compaction} \\ \text{factor in } BC_1 \end{array}$	Compr. in BC ₁	Momentum compaction factor in BC ₂	Compr. in BC ₂	Momentum compaction factor in BC ₃	Total compr. C	First derivative Z.	Second derivative Z ["] .
	R _{56,1} , [mm]	-1	R _{56,2} , [mm]	-2	R _{56,3} , [mm]		[m ⁻¹]	[m ⁻²]
1	-100	3.5	-54	8	-20	121	0	2000
0.5	-89	3.5	-50	8	-20	217	0	1000
0.25	-78	3.5	-50	8	-20	385	0	1000
0.1	-71	3.5	-50	8	-20	870	0	1000
0.02	-67	3.5	-50	8	-20	4237	0	500

 $E_1 = 130 \,\mathrm{MeV}$ $E_2 = 700 \,\mathrm{MeV}$ $E_3 = 2400 \,\mathrm{MeV}$

initial current
$$I = \frac{5 \text{ kA}}{C_{tot}}$$
 (0.1 nC $\rightarrow C_{tot} = 870$)
normalized emittance $\varepsilon_n = 1 \,\mu m \sqrt{\frac{q}{1 \, nC}}$
initial RMS energy spread $\delta E(q) = 2 \,\text{keV} \frac{q}{1 \, nC}$ gaussian / parabula

laser heater: perfect match of particle and optical beam

1) adjust laser amplitude for $\delta E_{end} = \delta E \times C_{tot} = 1 \text{ MeV}$

2) adjust laser amplitude for $\max\{G(\omega, S)\}=100 \rightarrow \delta E_{end}$

beta function: typical = 20 m, real optic for DOGLEG, BC0 ... BC2

optics without DOGLEG _ 🗆 🗙 📣 Figure 1 - 🗆 × 📣 Figure 1 File Edit Yiew Insert Tools Desktop Window Help Elle Edit View Insert Tools Desktop Window Help 🎦 🖆 🛃 🦕 🔍 🤍 🖑 🧐 🐙 🖌 - 🗔 📘 🗉 💷 🎦 🖆 🛃 🌭 | 🔖 | 🔍 🔍 🖑 🧐 🐙 🔏 • | 🗔 | 🗖 🖽 | 💷 🛄 BC1 BC2 DOG-LEG BC0 4 N

optics with DOGLEG

calculation ends after BC2 (or no longitudinal dispersion beyond that is)

adjust laser amplitude for $\delta E_{end} = \delta E \times C_{tot} = 1 \text{ MeV}$

1.5 THz (initial wavelength 0.2 mm)

gain(S) without DOGLEG

after DOGLEG, BC0, BC1, BC2

adjust laser amplitude for
$$\delta E_{end} = \delta E \times C_{tot} = 1 \text{ MeV}$$

1.5 THz

after DOGLEG, BC0, BC1, BC2, maximum

adjust laser amplitude for $\delta E_{end} = \delta E \times C_{tot} = 1 \text{ MeV}$

gain(f) without DOGLEG

gain(f) with DOGLEG

after BC2, maximum

adjust laser amplitude for $\max\{G(\omega, S)\}=100 \rightarrow \delta E_{end}$

gain(f) without DOGLEG

 $\delta E_{\rm end}/MeV = 3.2$

gain(f) with DOGLEG

 $\delta E_{\rm end}/MeV = 2.2$

 $\delta E_{\rm end}/MeV = 3.2$

 $\delta E_{\rm end}/MeV = 2.2$

Results and Comparison

