Wakefield computation of PETRAIII taper section Laura Lünzer

TECHNISCHE UNIVERSITÄT

DARMSTADT

Geometry of tapered structure

TECHNISCHE UNIVERSITÄT DARMSTADT

Source: R. Wanzenberg

Geometry of tapered structure

Source: R. Wanzenberg

TECHNISCHE

UNIVERSITÄT DARMSTADT

Geometry of tapered structure

TECHNISCHE UNIVERSITÄT DARMSTADT

Source: R. Wanzenberg

Wake potential calculations

"Standard" parameter calculations:

- Large differences in longitudinal wake potential
- 2. Transversal grid resolution very critical
- Usual 10 lines / sigma rule appears to be misleading

Structure simplification (CST PS)

Influence of vacuum tank

Structure simplification with less than 2% difference in long. wake potential.

Simulation simplification (CST PS)

Mesh simplification (PBCI)

Influence of anisotropic mesh

Mesh refinement only in critical direction (small side of pipe) Less than 1% error with simplified mesh

New in PBCI: Symmetry boundary condition

PBCI calculations

Slow convergence for longitudinal wake potential:

1.Only possible with anisotropic mesh refinement and symmetry boundary condition

2. Sim. time at finest grid: ~ 56 hrs on 2040 cores

PBCI calculations

CST-PS Simulations

Grid convergence of longitudinal wake potential:

1.Sim. time at finest grid (~160 ·10⁶ grid points): ~15 hrs

CST-PS Simulations

Grid convergence of longitudinal wake potential:

1.Sim. time at finest grid (~160 ·10⁶ grid points): ~15 hrs

2.Finer simulations possible

Boundary Approximation

- Problem is stronly geometry dominated
 - Slower convergence in PBCI (and MAFIA)
 - Better convergence in CST PS
 - Nevertheless, absolute accuracies obtained in both cases are comparable due to the higher resolution in PBCI
 - Simulation issues in CST PS
 - Different behavior for different PBA types
 - Stability problems for high grid resolution

Boundary Approximation

Perfect Boundary Approximation:

- large differences for different PBA at fixed resolution
- 2. Obvious mesh problem (error?) in PBA and FPBA-E results

Boundary Approximation

Perfect Boundary Approximation:

- leads to different results for low resolutions
- behavior changes suddenly at higher resolutions
- 3. strange oscillations at high resolution.Stability problem?

Loss Factor

Loss Factor calculation:

- 1. PBCI and CST calculations converge from different sides
- 2. Upper and lower estimation possible

Loss Factor

PBCI simulations

PBCI simulations

Thank you very much for your attention