X-Ray diffraction patterns of amorphous alloy Zr60Cu20Fe20 and their evolution at high temperature

Author: Stefan Michalik University Kosice, Slovakia Supervisor: Dr. Karel Saksl Group: HASYLAB

Bragg's law

$2dsin\theta = n\lambda$

- *d* spacing between layers of atoms
- θ angle between the incident rays and atomic plane
- λ wavelength of radiation

X-Ray Diffraction (XRD) patterns from

Metallic glasses

crystalline

amorphous

Metallic glasses are a new class of engineering materials having an amorphous structure on atomic level and unlike metals, they can be easily deformed at high temperature.

Teoretique parts

Calculation of structure factor S(Q) by Faber-Ziman formula

$$S(Q) = \frac{I_e(Q) - \langle f^2(Q) \rangle}{\langle f(Q) \rangle^2} \quad \langle f(Q) \rangle^2 = \left[\sum_{\alpha} c_{\alpha} f_{\alpha}(Q)\right]^2$$

$$\langle f^2(Q) \rangle = \sum_{\alpha} c_{\alpha} f_{\alpha}^2(Q)$$

 $I_e(Q)$ – the elastic intensity per atom,

- Q the magnitude of wave vector transfer = $4\pi \sin\theta/\lambda$
- λ the wavelength of scattered radiation
- θ the diffraction angle
- $f_{\alpha}(Q)$ the atomic form factor
 - c_{α} concentration of particular type of atoms α .

Amorphous structure study of Zr40Cu20Fe20

the shape of S(Q) displays a typical modulation characteristic for conventional metallic glasses For three-component alloy (e.g. Zr₄₀Cu₂₀Fe₂₀) structure factor S(Q) curve consists of the weighted sum of the 6 atomic partial functions Sij(Q) with weight factors w_{ij}

$$w_{ij} = c_i c_j f_i f_j / \left(\sum_i c_i f_i\right)^2$$

Bond type	Distance between two atoms (Å)	Weight factors	(1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Zr-Zr	3.2	0.4668	
Zr-Cu	2.878	0.2313	
Zr-Fe	2.841	0.2020	Zr-Fe
Fe-Cu	2.519	0.0513	
Cu-Cu	2.519	0.0287	2 - Fe-Cu 2 - 1.0 Fe-Fe Cu-Cu
Fe-Fe	2.482	0.0219	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 2.2 & 2.4 & 2.6 & 2.8 & 3.0 \\ 0 & 3.2 & 3.4 & 3.6 & 3.8 & 4.0 \end{bmatrix}$
•			r [A]

High temperature study

Why?

to know structural evolution at temperature loading

Sketch of tactics at measurement

Evolution of diffraction patterns at temperature loading

- performed on XRD pattern taken from the sample which undergoes the whole temperature cycle and was cooled down to room temperature
- revealed at least a presence of two phases
- indexed only cubic ZrCu phase, having a lattice parameter a = 3.235 Å and space group S.G: Pm3 m