STATE OF THE WIRES OF THE STRAW TUBE TRACKER

Daniel Alonso Alvarez - University of Oviedo - ASTURIAS

12th September 2005

STT

Contents

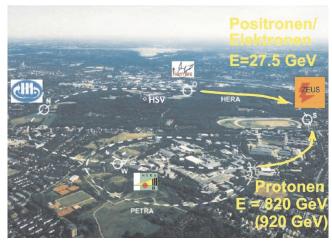
- About the Straw Tube Tracker
 - Why "Straw" Tube?
 - What is the STT?
 - Parts of the STT
 - Sectors
 - Pulse Test Setup
- 2 Analysis of the data
 - Data obtained from the tests
 - Previous knowledges
 - Results
 - Supposed reasons of the damage of the wires
- 3 Conclusions

Why "Straw" Tube?

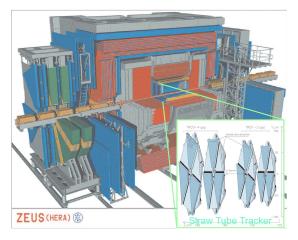
You will find the answer to this question in the picture:

Straw is long and thin ...

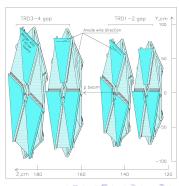
What is the STT?


The STT (Straw Tube Tracker) is a component of the ZEUS detector

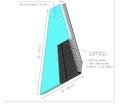
It is designed to improve the track reconstruction in the forward region of the detector


It was installed during the HERA shutdown in 2000

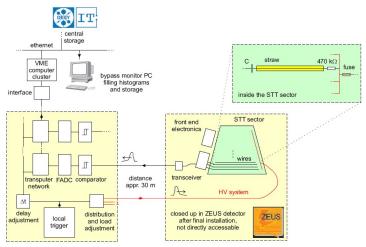
Where is ZEUS?



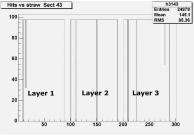
Where is the STT inside the detector?


Parts of the STT

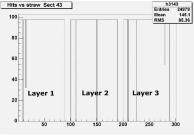
- Two STT: STT1 (small sectors) and STT2 (large sectors)
- Eight superlayers (wheels): four for each STT
- Six sectors per superlayer
- Sectors consists of tubes with wires inside:
 - Small sectors: 64Large sectors: 88
- Also three layers of wires per sector
- Position of the superlayers:


Sectors

- A sector is something like this —
- Each sector has at one side two or three data acquisition electronic boards
- But not all the wires of the sectors are OK! There are:
 - Dead wires
 - Unstable wires


- Analysis of these wires is very important to:
 - Know the state of the STT
 - Analyse if there is any similar evolution in order to detect a source of damage in the system
- To check the wires we use injected pulses (Pulse Test) →
 Big amount of **DATA** to analyse

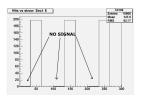
Pulse Test Setup


Data obtained from the tests

- 48 histograms (one per sector), e.g.:
- In the X axis: wires grouped in three layers
- In the Y axis: number of pulses received
- pulses are introduced but not always all the pulses reach the outp
- The number of pulses in the output establish the grade of unstability (0 hits means that the wire is dead)

Data obtained from the tests

- 48 histograms (one per sector), e.g.:
- In the X axis: wires grouped in three layers
- In the Y axis: number of pulses received
- A number of 98
 pulses are introduced but
 not always all the pulses reach the output
- The number of pulses in the output establish the grade of unstability (0 hits means that the wire is dead)



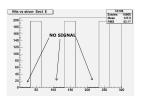
Previous knowledges I

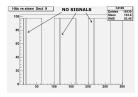
In some cases we know the reason why the wires don't work, so these data musn't be taken into account, e.g.:

Broken electronic board

This effect appears in the histogram as:

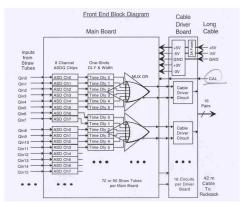
Previous knowledges I

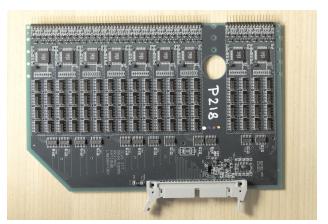

In some cases we know the reason why the wires don't work, so these data musn't be taken into account, e.g.:


Broken electronic board

This effect appears in the histogram as:

Transmission line fail


It seems that there are dead wires at the same position in each layer


Previous knowledges II

The main board of the acquisition uses MUX-OR gates for each 6 wires so if one of these is broken \rightarrow **Transmission line fail**

Previous knowledges III

A typical electronic board with mux gates, pre-amplifiers, ...:

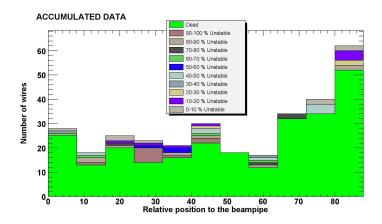
Results I

• Number of dead and unstable wires (10944 wires in total):

	Number
Dead wires	199
90-100 % Unstable wires	10
80-90 % Unstable wires	18
70-80 % Unstable wires	3
60-70 % Unstable wires	4
50-60 % Unstable wires	3
40-50 % Unstable wires	6
30-40 % Unstable wires	2
20-30 % Unstable wires	2
10-20 % Unstable wires	6
0-10 % Unstable wires	6

Only 1.82 % of the wires are dead \longrightarrow **Not Bad!**

Results II


• Quality of the wires:

RESPONDING WIRES (10944 total) 100 99 98 97 96 8 95 94 93

Quality of the wires

91

Results III

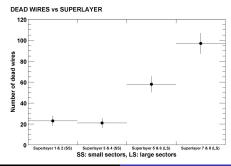
Data obtained from the tests Previous knowledges Results Supposed reasons of the damage of the wires

Results IV

Dead wires with respect to the relative position to the beampipe:

- Inner wires: no general behaviour found
- Outer wires: dead wires increasing with the relative position

Unstable wires with respect to the relative position to the beampipe:


- No conclusion has been found
- Not enough unstable wires to establish a pattern



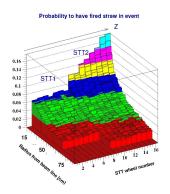
Results V

Dead wires with respect to the superlayers:

- First superlayers: no tendency
- Last superlayers: increasing number of dead wires with the axial coordinate

Supposed reasons of the damage of the wires

Length of the wires


Long wires → more probability to break

Supposed reasons of the damage of the wires

Length of the wires

Long wires → more probability to break

Hit probability of the wires:

Conclusions

- 97.5 % of wires completely OK and 1.82 % dead (rest unstable) \rightarrow **Quite well**
- Length is a decisive parameter
- Linear dependence of the dead wires with respect to the superlayers

Conclusions

- 97.5 % of wires completely OK and 1.82 % dead (rest unstable) \rightarrow **Quite well**
- Length is a decisive parameter
- Linear dependence of the dead wires with respect to the superlayers

Conclusions

- 97.5 % of wires completely OK and 1.82 % dead (rest unstable) \rightarrow **Quite well**
- Length is a decisive parameter
- Linear dependence of the dead wires with respect to the superlayers

Thank you for your attention