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Introduction: exploring the Terascale
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Particle accelerators: viewing the early Universe

Today’s universe is cold and empty: only the stable relics and
leftovers of the big bang remain

The unstable particles have decayed away with time, and the
symmetries that shaped the early Universe have been broken
as it has cooled

— Use particle accelerators to pump sufficient energy into a
point in space to re-create the short-lived particles and
uncover the forces and symmetries that existed in the
earliest Universe

= Accelerators probe not only the structure of matter
but also the structure of space-time, i.e. the fabric of the
Universe itself
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What can we learn from exploring the
new territory of TeV-scale physics 7

How do elementary particles obtain the property of mass:
what is the mechanism of electroweak symmetry
breaking? Is there a Higgs boson (or more than one)?

Do all the forces of nature arise from a single fundamental
Interaction?

Are there more than three dimensions of space?
Are space and time embedded into a “superspace”?

What is dark matter? Can it be produced in the
laboratory?

Are there new sources of CP-violation?
Can they explain the asymmetry between matter and

anti-matter in the Universe?
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What'’s so special about the Higgs 7

# The fundamental interactions of elementary particles are
described very successfully by quantum field theories that
follow an underlying symmetry principle:

“gauge invariance”

# This fundamental symmetry principle requires that all the

elementary particles and force carriers should be
massless

o However: W, Z, top, bottom, ..., electron are massive,
have widely differing masses

How can elementary particles acquire mass without spoiling
the fundamental symmetries of nature?
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The Higgs mechanism

Spontaneous symmetry breaking: the interaction obeys the
symmetry principle, but not the state of lowest energy

New field postulated that fills all of the space: the Higgs field

A !
The state of the lowest .,\ § *******
energy of the Higgs field 3 :,,-"“2>0
(vacuum state) does not obey > @ /
the underlying symmetry L &0
principle (gauge invariance) ~ \ @ // )

= Spontaneous breaking of the gauge symmetry
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The Higgs field and the Higgs boson

Higgs mechanism: fundamental particles obtain their masses
from interacting with the Higgs field

Higgs boson(s): field guantum of the Higgs field
(like the photon is the quantum of the electromagnetic field)

The postulated Higgs boson is a scalar particle (spin 0)

Up to now no fundamental scalar particle has been observed
In nature
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The Higgs mechanism sounds like a rather bold

assumption to cure a theoretical / aesthetical problem

But: Our current description of the fundamental interactions
breaks down at the TeV scale

We know that there has to be new physics that is responsible
for electroweak symmetry breaking

This new physics must manifest itself at the TeV scale
= LHC, future Linear Collider (LC)

Possible alternatives to the Higgs mechanism:

# A new fundamental strong interaction (“strong electroweak
symmetry breaking”)

# New dimensions of space (electroweak symmetry
breaking happens via boundary conditions for SM gauge
bosons and fermions on “branes” in a higher-dimensional
space)
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How to find the Higgs (or more than one) 7

o Heavy particle
— need high-energy collider, £ = mc?

# Unstable:
— need to look for decay products

# Comprehensive set of precision measurements and
accurate theory predictions will be needed to establish the
Higgs mechanism and to determine the Higgs properties

= One of the main goals for physics at the LHC and a
future Linear Collider
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Higgs: last missing ingredient of the "Standard Model"

But: the Standard Model cannot be the ultimate theory

o The Standard Model does not include gravity
— breaks down at the latest at Mpj.,c ~ 101 GeV

o “Hierarchy problem”: Mpianck/Mweax ~ 1017
How can two so different scales coexist in nature?

Via quantum effects: physics at M.k IS affected by
physics at Mpianck

= Instability of M.k
— Would expect that all physics is driven up to the
Planck scale

# Nature has found a way to prevent this
The Standard Model Prowdes no explanation

hat have we | t so far from the LHC?, G Weiglein, DESY Summer Student Lecture, Hamburg, 08 / 2011 — p.11



Hierarchy problem: how can the Planck scale be
so much larger than the weak scale ?

= EXpect new physics to stabilise the hierarchy

Supersymmetry:

Large corrections cancel out because of symmetry
fermions < bosons

Extra dimensions of space:
Fundamental Planck scale is ~ TeV (large extra dimensions),

hierarchy of scales is related to a “warp factor”
(“Randall-Sundrum” scenarios)
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Supersymmetry (SUSY)

Supersymmetry: fermion «—— boson symmetry,
leads to compensation of large quantum corrections
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The Minimal Supersymmetric Standard Model
(MSSM)

Superpartners for Standard Model particles:
u,d,c,s,t,b) LR e, p, 7| LR [Ve,lm]L Spin %

~ A~

[a,d,&,g,f,éhﬂ &0, 7) g [Peur],  SPINO

g W= HS ~,Z H) HY Spin 1/ Spin 0
~ ~:|: ~O . 1
g X1.2 X1,2,3.4 Spin 5

Two Higgs doublets, physical states: 1»°, HY, A, H*

General parametrisation of possible SUSY-breaking terms
= free parameters, no prediction for SUSY mass scale

Hierarchy problem =- expect observable effects at TeV scale
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Supersymmetry (SUSY)

SUSY: unique possibility to connect space—time symmetry
(Lorentz invariance) with internal symmetries (gauge
iInvariance):

Unigue extension of the Poincaré group of symmetries of
relativistic qguantum field theories in 3 + 1 dimensions

Local SUSY includes gravity, called “supergravity”

Lightest superpartner (LSP) is stable if “R parity” is conserved
= Candidate for cold dark matter in the Universe

Gauge coupling unification, Mgyt ~ 10'% GeV
neutrino masses: see-saw scale ~ .01—.1 Mgyt
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How does SUSY breaking work 7

Exact SUSY < m. =mg, ...
= SUSY can only be realised as a broken symmetry

MSSM: no particular SUSY breaking mechanism assumed,
parameterisation of possible soft SUSY-breaking terms

= relations between dimensionless couplings unchanged
= cancellation of large quantum corrections preserved
Most general case: 105 new parameters

Strong phenomenological constraints on flavour off-diagonal
and CP-violating SUSY-breaking terms

= Good phenomenological description for universal
SUSY-breaking terms (=~ diagonal in flavour space)
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Simplest ansatz: the Constrained MSSM (CMSSM)

Assume universality at high energy scale (Mqut, Mpy, - ..)
renormalisation group running down to weak scale
require correct value of My

= CMSSM characterised by

mg, my /9, Ao, tan 3, signpu

CMSSM has been the most widely studied SUSY scenario
up to now

CMSSM is in agreement with the experimental constraints
from electroweak precision observables (EWPO)
+ flavour physics + cold dark matter density + ...
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CMSSM phenomenology

mo, My 2, Ao: GUT scale parameters
= Spectra from renormalisation group running to weak scale

800

Lightest SUSY particle (LSP) "*"
IS usually lightest neutralino

. . T t:2
Gaugino masses run In same sl s =
way as gauge couplings i

- . 400 LH0 A0 —— H i - :
= gluino heavier than g ;

charginos, neutralinos
200 | I Ty y o

“Typical” CMSSM scenario L e
(SPS 1a benchmark scen.): ' S
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Radiative electroweak symmetry breaking

Universal boundary conditions at GUT scale,
renormalisation group running down to weak scale

My=300 GeV, M, ,,=100 GeV, Ay=0
400

300 i D T

200

Sparticle Mass (GeV)

100

large corrections from
top-quark Yukawa
coupling

= my, driven to
negative values

= ew symmetry
breaking

emerges naturally at

scale ~ 10% GeV for
100 GeV S myy S 200 GeV
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SUSY-breaking scenarios

“Hidden sector”: —— Visible sector:
SUSY breaking MSSM

“Gravity-mediated”: SUGRA
“Gauge-mediated”. GMSB
“Anomaly-mediated”’”: AMSB
“Gaugino-mediated”

SUGRA: mediating interactions are gravitational

GMSB: mediating interactions are ordinary electroweak and
QCD gauge Iinteractions

AMSB, Gaugino-mediation: SUSY breaking happens on a
different brane in a higher-dimensional theory
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Do we live In a meta-stable vacuum ?

Suppose we live in a SUSY-breaking meta-stable vacuum,

while the global minimum has exact SUSY
V oA

(Dpwn'\' ®, O

Recent developments: meta-stable vacua arise as generic
feature of SUSY QCD with massive flavours

Meta-stable SUSY-breaking vacua are “generic” in local
SUSY / string theory, can have cosmologically long life times
[K. Intriligator, N. Seiberg, D. Shih '06], . ..

= Many new ideas — hope for experimental input!
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Models with extra dimensions of space

4D Brane

\ =
Large Extra

Dimension

— N\—

Small Extra .
graviton

Dimension /

Kaluza-Klein Picture Brane-world Picture

‘A spacetime

Hierarchy between Mp., and M.k IS related to the volume
or the geometrical structure of additional dimensions of space

= observable effects at the TeV scale
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Why extra dimensions ?

String theories predict that there are actually 10 or 11
dimensions of space-time

The “extra” dimensions may be “compactified”, too small to be
detectable so far

To a tightrope walker, the
tightrope is one-dimensional:
he can only move forward or
backward

But to an ant, the rope has an extra dimension: the ant can
travel around the rope as well
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Phenomenological consequences of extra
dimensions

The wave function of a free particle must be 27 R periodic

e'f.p.ilfg, _ ap.(zs+27R)

1

i~
|
~s|

= momentum is quantised

= Looks in 4-dim like a series of new, more massive partners
associated with each known particle: “Kaluza—Klein tower”
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Phenomenological consequences of extra
dimensions

We may be trapped on a (3 + 1)-dimensional brane in a

higher-dimensional space-time, while gravity can enter the
extra dimensions

Extra dimensions could be large, even infinite

— Could explain the apparent weakness of gravity in our
4-dimensional world

= At the LHC, gravitons could be emitted into the extra
dimensions

= “missing energy” signals

If gravity Is strong at the TeV scale, particle collisions at the
LHC could form “mini black holes”
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What to expect?
Physics of electroweak symmetry breaking

Standard Model: a single parameter determines the whole
Higgs phenomenology: My

Branching ratios of the SM Higgs:

O = =1 1T 1T 1 T T 171 r7T 1T T 17 TTTT]TTTTT]TTH
0 T ISR IR B R

= dominant BRs:

My < 140 GeV.
H — bb

Branching Ratio

My 2 140 GeV.
H—-WtW~,Z27

300 500 700
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Production of a SM-like Higgs at the LHC

SM Higgs production at the LHC.:
Dominant production processes:

gluon fusion: gg — H, weak boson fusion (WBF): ¢q7 — ¢'¢ H
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Higgs physics beyond the SM

In the SM the same Higgs doublet is used “twice” to give
masses both to up-type and down-type fermions

— extensions of the Higgs sector having (at least) two
doublets are quite “natural”

= Would result in several Higgs states

Many extended Higgs theories have over large part of their
parameter space a lightest Higgs scalar with properties very
similar to those of the SM Higgs boson

Example: SUSY in the “decoupling limit”

But there is also the possibility that none of the Higgs bosons
Is SM-like
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Higgs physics in Supersymmetry
“Simplest” extension of the minimal Higgs sector:

Minimal Supersymmetric Standard Model (MSSM)

o Two doublets to give masses to up-type and down-type
fermions (extra symmetry forbids to use same doublet)

# SUSY imposes relations between the parameters
= Two parameters instead of one: tan 8 = 7=, My (OF Mp+)

= Upper bound on lightest Higgs mass, M;, (FeynHiggs):
[S. Heinemeyer, W. Hollik, G. W. '99], [G. Degrassi, S. Heinemeyer, W. Hollik,

P. Slavich, G. W. '02] M, < 130 GeV

Very rich phenomenology
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MSSM with complex parameters:
a very light SUSY Higgs ?

MSSM with CP-violating phases (CPX scenario):
Light Higgs, hi: strongly suppressed ~; V'V couplings

Second-lightest Higgs, ho, possibly within LEP reach (with
reduced V'V hy coupling), s beyond LEP reach

Large BR(hy — hihi) = difficult final state
my = 174.3 GeV [LEP Higgs WG '06]

Th ticall .
! CPX inaccessibié 3
0 20 40 60 80 100 120. 140
m,,, (GeV/c)

= Light SUSY Higgs not ruled out!
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How to infer the underlying physics from the
experimental signatures ?
# A Higgs or not a Higgs”?
# Fundamental or composite?
# SM, MSSM or beyond?
# |s there other new physics; what is it?

o How does the observed new physics fit into the global
picture (ew precision observables, flavour physics, ...)?

o ...

= Intense effort will be needed to identify the nature of
electroweak symmetry breaking
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What to expect?
What Is the scale of new physics?

EW precision data: Theory:
My, Myy,sin? 0<P° .. SM, MSSM, ... .

|

Test of theory at quantum level: loop corrections

Sensitivity to effects from unknown parameters: My, M, ...

Window to “new physics”
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Constraints on the SM Higgs from electroweak
precision data

Indirect constraint on Myy,,, ho direct search limits included in

the flt 6 i, m; = 161 GeV [LEPEWWG ,11]

_ 2 AaSa)d = |

S 2% — 0.027500.00033 N
. 3% 0.02749£0.00010 i :

4 incl. low Q° data  jf{ -

N>< |
g 3 | |

5 _

1 _

. | Excluded
30 100 300

m, [GeV]
= Preference for a light Higgs, My,,, < 161 GeV, 95% C.L.
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Global fit in constrained SUSY model: indirect
experimental and cosmological constraints

SUSY search prospects:

Global x* fit in the CMSSM (m, /5, mo, Ao (GUT scale), tan g,
sign(u) (weak scale))

Fit includes (MasterCode, Markov-chain Monte Carlo sampling):
[O. Buchmueller, R. Cavanaugh, A. De Roeck, J. Ellis, H. Flacher, S. Heinemeyer,
G. Isidori, K. Olive, P. Paradisi, F. Ronga, G. W. '08]

9

9

e

Electroweak precision observables: My, sin® 0.4, I'z, . ..

+ Cold dark matter (CDM) density (WMAP, .. .),
Qcpuv A2 = 0.1099 4+ 0.0062

+ (9 — 2),
+ BPO: BR(b — sv), BR(Bs — pu"u~), BR(B — 1v), ...
+ Kaon decay data: BR(K — uv), ...
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The anomalous magnetic moment of the muon:
(g —2), = 2a,

Experimental result for a,, vs. SM prediction (using e*e~ data
for hadronic vacuum polarisation):

P —al}*° = (302 +£88) x 107" : 340,

Better agreement between theory and experiment possible In
models of physics beyond the SM

Example: one-loop contributions of superpartners of fermions
and gauge bosons

Il j
~ ~0

N N o H

Xi ¥ - Ha ¥ _ -
g e A
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Prediction for the density of cold dark matter
(CDM) In the Universe

Cross sections for annihilation and co-annihilation processes

T ,’ ~ )2 b
,/

— ——WW\
X :,, f X Wt
J X+

_ W —

Cold Dark Matter density (WMAP, .. .):
Qcpu A2 = 0.1099 + 0.0062

= Comparison yields constraints on new physics
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Rare decay: By, — u*u~

[LHCb Collaboration '10]
LHCD

\ Prospects for B,.—uu at LHCb
Very rare decay in SM, well predicted BR(B.—pu)=(3.35 0.32) x10°.

Exclusion limit at 90% CL at Vs=7TeV - _ _
—_— — = Sensitive to NP, in particular

- \ DO (6.1 fb) 1 new scalars.
S B i In MSSM: BR o tan®p / M?
5 DO (11 fb%) |
:.;; o\ = e e e e e =
2 _©35+35T cramy| » SensitivityfromMC
ot I assuming measured bb
s cross-section
= T ; :
= EXxpectation being
,,,,,,,,,,,,,,,,,, confirmed by tests on data.

approaching new limit possible already with 50 pb-1

= High sensitivity to effects of new physics
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Pre—LHC: Fit results for the CMSSM
from precision data

Comparison: preferred region in the my—m, ;, plane vs. CMS

95% C.L.reachfor0.1.1 fb~! at 7 TeV

[O. Buchmueller, R. Cavanaugh, A. De Roeck, J. Ellis, H. Flacher, S. Heinemeyer,
G. Isidori, K. Olive, P. Paradisi, F. Ronga, G. W. '10]

& 1000
( ~ % LSP
; 900— U tanf)=10, A0=0, M>0
8 - CMS preliminary
[ 800:_ \/§=7 TeV
Q 700: Hadronic search, 95% C.L. curves
- -
= = = L = 1000/pb LV
600—
- == | =100/pb
500: CMS-NOTE-2010-008
400
- full CMSSM
300 parameter space
200 68% C.L. MASTEeRcane
100 95% C.L.
NO EWSB
0III|III|IIIIII|III|III|III|IIIIIIIII
0 200 400 600 800 1000 1200 1400 1600 1800 2000

M, [GeV/c?]

= Best fit point was within the 95% C.L. reach with 1 fb~!
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Indirect prediction for the Higgs mass in the SM and the
CMSSM / NUHML1 from precision data

—
x? fit for My, without imposing direct search limit e
) SM CMSSM ) SM NUHM1
3 2 3 2
N%< 5 | N%< 5 | |
1 2 1 5
0 _ Exclludledl ™ | 0 _ Exclludcledl ), - |
30 100 300 30 100 300
my [GGV] my, [GGV]
MEMSM — 108 £ 6 GeV MNUAML — 19112 GeV

= Accurate indirect prediction; Higgs “just around the corner™?

What have we learn r from the LHC?, Georg Weiglein, DESY Summer Student Lecture, Hamburg, 08 / 2011 — p.39



Production of SUSY particles at the LHC
SUSY production cross sections at the LHC with 7 TeV:

10 E T T T ‘ T T 1 ‘ T 11 ‘ T TN \PTO\SF)I\ n92 %

- O,[Pb]: pp - SUSY VS=7TeV |

1 = E

_1 B |

10 = E

_2 B q

10 = E

: X0 .

10 -3 I | ‘ I ‘ | 1 -1 | ‘ I ‘ I I ‘ \X\Zq\LO\ ‘ I ‘ L1 1 |

100 200 300 400 500 600 700 800 900

Myerage [GeV]

= Highest cross section for gluino and squarks of the
first two generations

Squark and gluino couplings ~ ag; cross sections mainly
determined by m; ;, small residual model dependence
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SUSY searches at the LHC

Dominated by production of coloured particles:
gluino, squarks (mainly first two generations)

Very large mass reach in the searches for
jets + missing energy

= gluino, squarks accessible up to 2—-3 TeV at LHC (14 TeV)

Coloured particles are usually heavier than the colour-neutral
ones

— long decay chains possible; complicated final states
€.0.. §— qj— qqXs — Gq7T — qqTTX)

Many states produced at once, difficult to disentangle
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Results up to now

The LHC:
proton—proton collisions at 7 TeV (now) and 14 TeV ( 2 2014)

: ks 11 =L
P e et
lbt B f‘-—‘l_l- ;

. \'h.. %—u .
Pmr—tam 4—---_—_ s i i i—— "‘":‘:EF:p'

— e, A i = S e T

What have we learnt so far from the LHC?, Georg Weiglein, DESY Summer Student Lecture, Hamburg, 08 / 2011 — p.42



The Large Hadron Collider (LHC)

Proton—proton scattering at 7—14 TeV:. composite objects of
guarks and gluons, bound together by strong interaction

= Has opened up new a energy domain
complicated scattering processes
10” scattering events/s at LHC design luminosity
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The LHC physics programme at 7 TeV started
on March 30, 2010

Candldate for a W+ boson decaylng |nto et Ve

Run Number: 152409, Event Number: 5966801
Date: 2010-04-05 06: 54750 CEST

“ W-ev candidate in
7 TeV collisions

) p,(e+) = 34 GeV
nle+)= -0.42
S E," = 26 GeV

y | , e

= First steps: “rediscovery” of the Standard Model
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Example: di-muon invariant mass distribution

[ATLAS Collaboration "10]
Dimuon Resonances (+ the Z)

E C T T T T J!’l}l‘HIH' T L B B 8|mp|eana|y5|s
8 10°E arasreimnay | J L ~30pb = U LVL1 muon trigger with
c i } Y <P pr ~ 6 GeV threshold
S - 4 1 . 1 2 opposite-sign primary muons
E 100 o ! = reconstructed by combining
o F tracker and muon spectrometer
N i i
IOV, _
w 10 3 E
O i 7
o I ]
8_ " _

10 E

1! Data 2010,\s=7 Tev
A | | | | I || | | L1l |
1 10 10°
M., [GeV]

LHC production of W, Z, top, ...has been observed
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LHC luminosity: where do we stand?

Delivered integrated luminosity (fb™')

3.0

2.5H

2.0 H
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SM Higgs search: latest results from ATLAS

Combined upper limit normalised to the SM expectation

[ATLAS Collaboration "11]

=
(@)
T TTTTT

95% CL Limit on G/OSM

101

ol | |
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] ] I ] ] ] | ] ] ] | ] ] ] | ] ] ] | ] ] ] | ] ] ] I
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SM Higgs search: latest results from ATLAS

Combined upper limit normalised to the SM expectation (left)
and observed result vs. expectation for a SM Higgs signal

(right) [ATLAS Collaboration '11]
= Y L P
b | ATLAS Preliminary CLs Limits ]
B — -
S —— Observed |
o ---- Expected ]
= xP Ldt = 1.0-2.3 fo_
5 = I:Ii lo I
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X
T} C o ]
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SM Higgs search: latest results from CMS

Combined confidence limit vs. expectation for a SM Higgs

signal [CMS Collaboration *11]
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SM Higgs search: Tevatron results, CDF + DO

CDF + DO combined upper limit normalised to the SM
expectation [CDF and DO Collaborations "11]
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Status of SM Higgs searches

o LHC excludes (at least at 90% C.L.) the range of
145 GeV < My, < 460 GeV

= Results from direct searches are in agreement with
iIndirect constraints from electroweak precision data

o LEP exclusion: My, > 114.4 GeV, 95% C.L.

o Slight excess in the low-mass region, My, =~ 130 GeV,
observed by ATLAS, CMS and in Tevatron combination

Compatible with SUSY prediction

= More data needed to clarify the situation
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Search for the heavy SUSY Higgs bosons H, A:
limits in the M j—tan (G plane

|[ATLAS Collaboration '11] [CMS Collaboration '11]
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= High sensitivity for large tan 5 and relatively low My
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SUSY search results for the CMSSM

[ATLAS Collaboration '11] [CMS Collaboration '11]
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= High sensitivity from search for jets + missing energy
Previous best-fit point is excluded
CMSSM starts to get under pressure
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Interpretation of SUSY search result
In "simplified model"

"Simplified model": squarks of first two generations, gluino +

massless neutralino (LSP), all other SUSY particles heavy
[ATLAS Collaboration "11]
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Status of SUSY searches

# Search for jets (+ leptons) + missing energy

= Bounds on gluino and squarks of first two generations
of O( TeV)

= The constrained scenario CMSSM starts to get under
some tension: direct search limits vs. (g — 2),

# Limited sensitivity to 3rd generation squarks

Hardly any LHC constraints on colour neutral SUSY
particles up to now

What have we learnt so far from the LHC?, Georg Weiglein, DESY Summer Student Lecture, Hamburg, 08 / 2011 — p.55



Search for the rare decay

B physics rare decay par excellence:

BR(B,—HH)gy = (3.2+0.2) x 10°
[A.JBuras, arXiv:1012.1447]

Precise prediction (which will improve) !
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BR(Bs — p*p~): combined result
from LHCb and CMS

A preliminary CMS-LHCb combination on BR(B.—u*u") has been performed,
again using the CLs approach, & taking LHCb value of f,/f;as common input
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—--- Expected (background 1

\ t1co Dnlﬂ -
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Ny E
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Observed limit at 95% (90%): 1.1 (0.9) x 10-®
This is 3.4 times the expected SM value

A BR of 1.8 x 108 has a CLs value of ~0.3%
= Compatible with SM prediction (so far

What have we learnt so far from the LHC?, Geord Weiglein, DESY Summer Student Lecture, Hamburg, 08 / 2011 — p.57



Search for dilepton resonances: ATLAS

[ATLAS Collaboration '11]
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Search for dilepton resonances: CMS

High p; di-leptons il

[CMS Collaboration "11]

CMS-PAS-EX0-11-019.
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= Limits up to 1.9 TeV
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Conclusions

LHC has started the exploration of the new territory of
TeV-scale physics

No discoveries yet

Heavy SM Higgs is disfavoured, in agreement with
constraints from electroweak precision physics
Slight excess In the low-mass region

= Closing in on the SM Higgs

BSM searches: limits on coloured states of new physics,
heavy resonances, ...

SUSY: limits on gluino and 1st and 2nd gen. squarks

— Tension building up for CMSSM-like scenarios

Little sensitivity so far to other parts of a possible SUSY
spectrum (similarly for other kinds of new physics)

Stay tuned — the party has just begun!
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