

Elektroweak Physics Higgs Physics from the Tevatron to the LHC DESY summer student lectures Hamburg, Aug. 16, 2011

Georg Steinbrück

Hamburg University

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

- Why electroweak physics at a hadron collider?
- W and Z production and detection
- Cross section measurements
- Drell-Yan forward-backward asymmetry and the weak mixing angle
- The W mass
- The W charge asymmetry
- Diboson physics/ TGCs
- Electroweak Summary

• Why electroweak physics at a hadron collider?

- W and Z production and detection
- Cross section measurements
- Drell-Yan forward-backward asymmetry and the weak mixing angle
- The W mass
- The W charge asymmetry
- Diboson physics/ TGCs
- Electroweak Summary

 Electroweak physics is precision physics: 	hysics:				^{is} _∩ ^{fit}	l/a ^{me}	eas
lesting the SM at the loop level and		Measurement	1 11	0	1	2	3
beyond	$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02750 ± 0.00033	0.02759				
 e+e-collider are predestined to achieve 	m _z [GeV]	91.1875 ± 0.0021	91.1874				
the highest precision due to their simple	Γ _z [GeV]	2.4952 ± 0.0023	2.4959				
initial state: LEP. Many LEP	$\sigma_{had}^{0}\left[nb ight]$	41.540 ± 0.037	41.478				
measurements are still the most precise: Z	R _I	20.767 ± 0.025	20.742		•		
mass	A ^{0,I}	0.01714 ± 0.00095	0.01646				
• However: Abundant statistics and very	$A_{I}(P_{\tau})$	0.1465 ± 0.0032	0.1482				
aleen eemplee melee ΓM physics	R _b	0.21629 ± 0.00066	0.21579				
	R _c	0.1721 ± 0.0030	0.1722				
competitive at hadron colliders. Have	A ^{0,b}	0.0992 ± 0.0016	0.1039		-		
surpassed LEP in many measurements: W	A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0743		4		
mass!	A _b	0.923 ± 0.020	0.935				
	A _c	0.670 ± 0.027	0.668				
 Many interesting measurements at the 	A _I (SLD)	0.1513 ± 0.0021	0.1482		-		
interface of EW and QCD. Specific	$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314				
measurements for hadron colliders	m _w [GeV]	80.399 ± 0.023	80.378		l		
	Г _w [GeV]	2.085 ± 0.042	2.092	•			
	m _t [GeV]	173.20 ± 0.90	173.27				
						<u> </u>	
	July 2011			0	1	2	3

- Why electroweak physics at a hadron collider?
- W and Z production and detection
- Cross section measurements
- Drell-Yan forward-backward asymmetry and the weak mixing angle
- The W mass
- The W charge asymmetry
- Diboson physics/ TGCs
- Electroweak Summary

W/Z Factories: Tevatron →LHC

location
start
collider type
experiments (top)
√s
L (instantaneous)
L (integrated)
$\sigma(pp \rightarrow W + X \rightarrow I_V + X)$
W+X→Iv+X events
/ 100 pb ⁻¹

Fermilab, USA 1987 proton – anti-proton **CDF, D0** 1.8 GeV \rightarrow 1.96 GeV 10³⁰ \rightarrow 3x10³² cm⁻²s⁻¹ \approx 10,000 pb⁻¹ \approx 2.7 nb \approx 270000 CERN, Geneve, Switzerland 2008 (restart 2010) proton – proton **ATLAS, CMS,** ALICE, LHC-B 14 TeV (7 TeV for 2010) 10^{34} (4x10³² for 2010) cm⁻²s⁻¹ \approx 300/3000 fb⁻¹ \approx 10.5 nb at 7 TeV \approx 1 M

W/Z production

W production

Tevatron: W⁺ produced more abundantly in the direction of the proton and vice versa.

However: W⁺ and W⁻ rapidity distributions are identical (but mirrored), absolute rates the same. LHC: W⁺ and W⁻ each symmetric in rapidity (symmetric initial state: pp).

However: W⁺ and W⁻ rapidity distributions and absolute rates differ: Valence u quarks carry more momentum on average than d quarks.

W and Z detection

Decay channels: W: 1/9=11% W→Iv (lepton universality) 2/3=67% hadrons

Z: Z→II: 3.4% Z→vv: 20.5% ("invisible channel") Z→hadrons: 69.2%

Leptonic decay channels almost exclusively used at hadron colliders.

One or two charged leptons

Large missing transverse Energie (Neutrino from W decay)

Possibly additional hard jets

→Clean signatures→low background

 \rightarrow Large cross sections \rightarrow W/Z produced in

abundance \rightarrow Precision measurements, differential

 \rightarrow Can be used as a tool to understand the detector

Event Displays

- Why electroweak physics at a hadron collider?
- W and Z production and detection
- Cross section measurements
- Drell-Yan forward-backward asymmetry and the weak mixing angle
- The W mass
- The W charge asymmetry
- Diboson physics/ TGCs
- Electroweak Summary

Cross section measurements are conceptually simple*:

* The devil is in the details!

Backgrounds and efficiencies often have to be know as a function of kinematic variables:

I.e.: Differential cross sections

Sometimes cross section ratios are measured:

(Partial) cancellation of uncertainties!

Measurement techniques: Tag and probe method

- "Tag" events with sufficient purity, leaving an unbiased "probe" object.
- Measure probe ID efficiency in situ.
- Constrains the performance of our object identification.
- Derive scale factors for correcting our simulation.

Missing transverse Energy for W candidate events in the muon channel.

Dielectron invariant mass distribution in for Z candidate events.

Cross section measurements: Results

Differential cross sections (Z)

Drell-Yan Mass Distribution

- Why electroweak physics at a hadron collider?
- W and Z production and detection
- Cross section measurements
- Drell-Yan forward-backward asymmetry and the weak mixing angle
- The W mass
- The W charge asymmetry
- Diboson physics/ TGCs
- Electroweak Summary

$$\frac{d\rho}{d\cos\theta^*} = \frac{3}{8} (1 + \cos^2\theta^*) + A_{FB} \cos\theta^*$$

- θ^* is the quark-lepton angle in the CM-frame
- Choose special frame where dilepton-direction is used to approximate quark direction
- A_{FB} depends on quark-type and effective weak mixing angle, $sin^2\theta_{W,eff}$
- \rightarrow Sensitive to $\sin^2\theta_{W,eff}$

Direct measurement of $sin^2\theta_{W,eff}$

Model the dependence of experimental observables in the dimuon-channel on sin²θ_{W,eff} at generator level
 M(μμ), y(μμ), Collins-Soper angle (θ*_{CS})
 Parametrize experimental response
 → Extract sin²θ_{W eff}

- Why electroweak physics at a hadron collider?
- W and Z production and detection
- Cross section measurements
- Drell-Yan forward-backward asymmetry and the weak mixing angle
- The W mass
- The W charge asymmetry
- Diboson physics/ TGCs
- Electroweak Summary

Using three different observables which are correlated with the W mass, with different systematics. Fit to templates generated in fast Monte Carlo.

TABLE II: Systematic uncertainties of the M_W measurement.

	$\Delta M_W ~({ m MeV})$			
Source	m_T	p_T^e	E_T	
Electron energy calibration	34	34	34	
Electron resolution model	2	2	3	
Electron shower modeling	4	6	7	
Electron energy loss model	4	4	4	
Hadronic recoil model	6	12	20	
Electron efficiencies	5	6	5	
Backgrounds	2	5	4	
Experimental Subtotal	35	37	41	
PDF	10	11	11	
QED	7	7	9	
Boson p_T	2	5	2	
Production Subtotal	12	14	14	
Total	37	40	43	

M_W	=	$80.401 \pm 0.021 \; ({\rm stat}) \pm 0.038 \; ({\rm syst}) \; {\rm GeV}$	
	=	80.401 ± 0.043 GeV.	

Most precise single W mass measurement!

Squezing everything out of one distribution: Tail of transverse W mass distribution sensitive to width of the W boson.

Not as precise as indirect measurement from W/Z cross section ratio, but less model dependent.

W Mass Measurements in Perspective

The W mass is one of the fundamental parameters of the standard model. Together with the Top mass, it is connected to the Higgs mass via virtual loop corrections: See also lecture on top quark physics on Thursday.

Mass of the Z Boson: Measured to <u>extremely</u> High precision in LEP-1 (Remember: LEP-1 scanned the Z-resonance \rightarrow Precision through precision on beam energy) W mass at LEP-2: W only produced in pairs at LEP. W mass not as precise. \rightarrow Tevatron has surpassed LEP on W mass.

Steinbrück

- Why electroweak physics at a hadron collider?
- W and Z production and detection
- Cross section measurements
- Drell-Yan forward-backward asymmetry and the weak mixing angle
- The W mass
- The W charge asymmetry
- Diboson physics/ TGCs
- Electroweak Summary

W charge asymmetry at the LHC

Measure W+/W- ratio as a function of pseudorapidity

$$\mathcal{A}(\eta) = \frac{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) - \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) + \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}$$

Two pT cuts probe different regions of phase space.

Theory: NLO-QCD (MCFM-Program) Sensitive to PDFs: Measurement compared to two different PDF-sets: <u>CT10W</u> and <u>MSTW2008NLO</u>

W charge asymmetry at the LHC: Impact

Uncertainty of d,u,dbar,ubar,s pdf's already reduced by 40% in 10⁻³<x<10⁻² using CMS measurement.

LHCb significantly extends angular range of this measurement!

- Why electroweak physics at a hadron collider?
- W and Z production and detection
- Cross section measurements
- Drell-Yan forward-backward asymmetry and the weak mixing angle
- The W mass
- The W charge asymmetry
- Diboson physics/ TGCs
- Electroweak Summary

- SM processes
- Test the gauge structure of the SM
- Boson self-interactions via the non-abelian gauge structure
- Anomalous triple (and quartic) couplings would be a hint of physics beyond the standard model

Triple boson vertex (only WWZ, WWγ in the SM, no ZZZ, ZZγ, Zγγ)

A little history...

- Why electroweak physics at a hadron collider?
- W and Z production and detection
- Cross section measurements
- Drell-Yan forward-backward asymmetry and the weak mixing angle
- The W mass
- The W charge asymmetry
- Diboson physics/ TGCs
- Electroweak Summary

CMS EW Results: Summary

Higgs Physics

Outline (Higgs)

- Introduction
- Higgs searches at LEP
- Higgs searches at Hadron colliders
 - Higgs searches at the Tevatron
 - Higgs searches at the LHC

Outline (Higgs)

Introduction

- Higgs searches at LEP
- Higgs searches at Hadron colliders
 - Higgs searches at the Tevatron
 - Higgs searches at the LHC

You probably already learned some basics of the Higgs mechanism in one of the previous lectures.

In a nutshell:

Standard model described by SU(3)_{Color}xSU(2)_LxU(1)_Y symmetry. Initially leads to massless particles, in clear contradiction to observation.

One solution: Electroweak symmetry breaking aka Higgs-Mechanism

Introduces new scalar Higgs field with non-zero vacuum expectation value v=246 GeV that breaks the SU(2)xU(1) electroweak symmetry.

Electroweak gauge interaction → Weak gauge bosons (W,Z) obtain their masses

Yukawa coupling Y

 \rightarrow Lepton and quark masses

proportional to Higgs VUV and $\boldsymbol{Y}_{q,I}$

LEP: m(Higgs)>114 GeV 3-

Higgs Boson Searches: Where to look...

 Second exclusion band (158<m(Higgs)<175 GeV at 95%CL) from recent Tevatron measurements. →More later...

Precision EW data prefer a

light Higgs boson: m(Higgs)

"Most likely" Higgs masses

excluded by direct searches at

(89+35-26 GeV) already

<158 GeV at 95%CL

υн

茁

m_н [GeV]

Higgs Boson Searches: Where to look...

 Coupling of Higgs boson to SM particles proportional to their masses ("Yukawa coupling") →Decay favored in heaviest particle which is kinematically accessible

UΗ

Ĥ

 Coupling to massless particles (photon, gluon) via fermion loops:

Branching ratios for Higgs decay:

Higgs searches:

"No channel left behind" strategy

Steinbrück

Outline (Higgs)

- Introduction
- Higgs searches at LEP
- Higgs searches at Hadron colliders
 - Higgs searches at the Tevatron
 - Higgs searches at the LHC

UH H1

Higgs Searches at LEP

H⁰ e^+ Main production channel $ee \rightarrow Z \rightarrow HZ$ (Higgs-Strahlung) **Z**(*) Kinematic threshold at $m(H) = \sqrt{s} - m(Z)$ Main search channels governed by decay of H and Z: Mainly $H \rightarrow bb$, also tau tau Ζ0 e Z→II, qq, nunu

No significant excess seen at LEP-2. \rightarrow Higgs mass limit close to the kinematic threshold. (At LEP 2 the beam energy was increased to up to 207 GeV) Steinbrück

Outline (Higgs)

- Introduction
- Higgs searches at LEP
- Higgs searches at Hadron colliders
 - Higgs searches at the Tevatron
 - Higgs searches at the LHC

Higgs Searches at the Tevatron

Low mass: Overwhelming background from QCD multijet events \rightarrow gg \rightarrow H not viable

→ Associated Higgs production channels (H+W/Z) much cleaner, despite the lower branching ratios

High mass:

→ Direkt Higgs production (gg→H) can be used since the clean channels H→VV are open now.

Example for Higgs search at the Tevatron: $H \rightarrow WW^*$

BR (WW \rightarrow IvIv)=10%, but clean channel

Take all combinations of leptons and jet multiplicities (0,1,>1)

Use neural network or boosted decision trees to maximize sensitivity

 \rightarrow Example variable from opposite sign dilepton analysis from CDF:

Combination of many analyses by CDF and D0 yields cross section limit as a function of Higgs mass. Limit/SM expectation<1 \rightarrow exclusion!

Outline (Higgs)

- Introduction
- Higgs searches at LEP
- Higgs searches at Hadron colliders
 - Higgs searches at the Tevatron
 - Higgs searches at the LHC

Higgs Searches at the LHC: $H \rightarrow \gamma \gamma$

Understanding of background and of signal resolution very important.

Analysis done in 8 event categories.

Higgs Searches at the LHC: CMS combined

Ш

ЦЦ,

50

CMS Higgs discovery prospects

- Precision Electroweak Physics can be done at a hadron collider!
- Huge statistics and clean samples.
- Many measurements surpassed the ones from LEP: I.e. W mass
- Much more to come....
- Electroweak Symmetry Breaking plays a leading role in the standard model.
 Finding the Higgs boson is one of the main aims of the LHC.
- First exlusion beyond LEP at the Tevatron (around 165 GeV)
- LHC has taken over! Excellent prospects with several fb⁻¹ coming this year.