PHYSICS AT THE LHC

Thomas Schörner-Sadenius
Georg Steinbrück

DESY Summerstudent Programme
August 2011
STRUCTURE OF LECTURES

<table>
<thead>
<tr>
<th>Lecture 1 (TSS)</th>
<th>Lecture 3 (GS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHC: Motivation, machine, experiments</td>
<td>Heavy quarks and resonances</td>
</tr>
<tr>
<td>Luminosity and its measurement</td>
<td>Strangeness, charm, J/Psi,</td>
</tr>
<tr>
<td>Basics of pp physics</td>
<td>b physics, rare decays, B mixing, CP</td>
</tr>
<tr>
<td>Soft QCD</td>
<td>b tagging; Outlook on LHCb</td>
</tr>
<tr>
<td>Hard QCD: Jets, photons, jet algos</td>
<td>Top: cross section and mass, etc.</td>
</tr>
<tr>
<td>QCD lessons learned</td>
<td>Single top, V_{tb}, 4th generation</td>
</tr>
<tr>
<td>Heavy ions and ALICE</td>
<td>SM consistency and new physics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture 2 (GS)</th>
<th>Lecture 4 (TSS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroweak physics: Z, W, $Z/W+\text{jets}$</td>
<td>SUSY – Motivation and theory</td>
</tr>
<tr>
<td>Candles for calibration, W mass, PDFs</td>
<td>Exp. signatures</td>
</tr>
<tr>
<td>Diboson physics, TGCs</td>
<td>Limits and a little of statistics</td>
</tr>
<tr>
<td>(SM) Higgs: Motivation / mechanism</td>
<td>Signal interpretation</td>
</tr>
<tr>
<td>Results: LEP, Tevatron, LHC – limits?</td>
<td>SUSY and Higgs</td>
</tr>
<tr>
<td>BSM appetizer</td>
<td>Other BSM physics and exotica</td>
</tr>
</tbody>
</table>
Standard model (SM) of particle physics works remarkably well!

- No Higgs: divergence of SM at 1 TeV?
- SM NOT beautiful!
 Free parameters?
- SM: no coupling / mass unification!
- SM: No dark-matter candidate!
- Gravity?
- Gauge structure?
- Three generations?
- Hierarchy?
- Baryon asymmetry?
- Connection between quarks and leptons?
- …
For 40 years we have searched and produced models to be searched for …

Now we are (almost) there!!!
WHY THE LHC??????
NEW PHYSICS …

How to search for new physics ???
- model-independent or
- specific final-state signatures
(with large deviations from SM expectation)
NEW PHYSICS: MOTIVATION

Potential DM candidates (but disproved by new astrophysics results?): WIMPs (weakly interacting massive particles). WIMP candidates occur in many BSM models.
Kepler / Newton: \(v \sim \frac{1}{\sqrt{R}} \)
NEW PHYSICS: MOTIVATION

For reasons of simplicity and beauty: Want all 3 SM interactions to unite at high scale!
\[\mathcal{L}_{GW} = \sum_f (\bar{\Psi}_f (i \gamma^\mu \partial_\mu - m_f) \Psi_f - eQ_f \bar{\Psi}_f \gamma^\mu \Psi_f A_\mu) + \]
\[+ \frac{g}{\sqrt{2}} \sum_i (\bar{a}_i^L \gamma^\mu b_i^L W_{\mu}^+ + \bar{b}_i^L \gamma^\mu a_i^L W_{\mu}^-) + \frac{g}{2c_w} \sum_f \bar{\Psi}_f \gamma^\mu_l (I_f^3 - 2 s_w^2 Q_f - I_f^3 \gamma_5) \Psi_f Z_{\mu} + \]
\[- \frac{1}{4} |\partial_\mu A_\nu - \partial_\nu A_\mu - ie (W_\mu^- W_\nu^+ - W_\mu^+ W_\nu^-)|^2 - \frac{1}{2} |\partial_\mu W_\nu^+ - \partial_\nu W_\mu^+ + \]
\[- ie (W_\mu^+ A_\nu - W_\nu^+ A_\mu) + ig' c_w (W_\mu^+ Z_\nu - W_\nu^+ Z_\mu)|^2 + \]
\[- \frac{1}{4} |\partial_\mu Z_\nu - \partial_\nu Z_\mu + ig' c_w (W_\mu^- W_\nu^+ - W_\mu^+ W_\nu^-)|^2 + \]
\[- \frac{1}{2} M_\eta^2 \eta^2 - \frac{g M_\eta^2}{8 M_W} \eta^3 - \frac{g'^2 M_\eta^2}{32 M_W} \eta^4 + |M_W W_\mu^+ + \frac{g}{2} \eta W_\mu^+|^2 + \]
\[+ \frac{1}{2} |\partial_\mu \eta + i M_Z Z_\mu + \frac{ig'}{2 c_w} \eta Z_\mu|^2 - \sum_f \frac{g}{2} \frac{m_f}{M_W} \bar{\Psi}_f \Psi_f \eta \]

Neither simple nor beautiful?
We know: $m_H < 140 \text{ GeV}$!
But: loop corrections to m_H?

Expect: $\Delta m^2_H \propto \Lambda^2$

$m^2_H \approx M^2_{Pl} \approx 10^{2.19} \text{ GeV}^2$

Which “fine-tuning” can rearrange the “hierarchy”???

Solution: Introduce “shadow world”, related via symmetry!
One SUSY partner for each SM state!

Fermion loops cancel boson loops and $v v$!

Works as long as mass difference not too large
\Rightarrow SUSY particles $< 1 \text{ TeV}$!!!
INTRODUCING SUSY

<table>
<thead>
<tr>
<th>FERMIONS</th>
<th>BOSONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>spin</td>
<td>Name</td>
</tr>
<tr>
<td>½</td>
<td>leptons</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>½</td>
<td>quarks</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>½</td>
<td>gluinos</td>
</tr>
<tr>
<td>½</td>
<td>charginos</td>
</tr>
<tr>
<td>½</td>
<td>neutralinos</td>
</tr>
</tbody>
</table>

SM particles (observed) | SM particles (not yet observed) | Super Partners (not yet observed)
SUSY: MOTIVATION

\begin{align*}
\frac{1}{\alpha_1}, \quad \frac{1}{\alpha_2}, \quad \frac{1}{\alpha_3}
\end{align*}

\begin{align*}
\text{SM} \\
\text{MSSM}
\end{align*}
• New symmetry between bosons and fermions
 ¬ Partner particle for each SM particle –
 • same quantum numbers and couplings except for spin!

• Solves many of the mentioned problems
 • natural light Higgs,
 • hierarchy
 • DM (e.g. neutralino χ_0 as mixture of SUSY partners of Z,γ,H)
 • inclusion of gravitation
 • gauge structure
 • Unification

• Freedom: symmetry breaking,
 QN conservation
 • R parity: $R = (-1)^{3B+L+2S}$
 If R violated ¬ proton decay!
 • RP conservation: Pairwise production,
 cascade decay, stable LSP (lightest SUSY particle)
SUSY: MODELS

• SUSY is a broken theory!!!
 Resulting disadvantage: many free parameters (masses, mixings, in MSSM 125!)

• Models for SUSY breaking:
 • … introduce assumptions --. Drastic reduction of parameters
 • … allow predictions for sparticle mass spectra
 • … examples: mSUGRA, GSMB, …

• Example mSUGRA:
 • … unification of SUSY spin-0 and SUSY spin-1/2 particle masses at GUT scale
 • … only 5 parameters left: \(\tan\beta, m_0, m_{1/2}, \text{sign}(\mu), A_0 \)

 \[
 \frac{1}{2} M_Z = \frac{m_{H_1}^2 - m_{H_2}^2 \tan^2 \beta}{\tan^2 \beta - 1} - |\mu|^2 > 0
 \]

 • … calculation of masses at lower scales (“running masses”)
 • … LSP as DM candidate!
RPC SUSY: pair production of (heavy) squarks and gluinos:
- large Xsection: 10-100 pb
- cascade decays to final state
⇒ inclusive search strategies with all relevant physics objects!

- $E_{T,\text{miss}}$ (MET, from LSP)
- hard jets (from coloured particles)
- hard leptons (from intermediate decays, OS, SS)

- MET + jets
- MET + jets + N leptons
- MET + jets + btag
- MET + jets + N γ
- …

In RPC models: lightest SUSY particle (LSP)
⇒ undetected ⇒ MET!
• Direct DM searches: e.g. cryogenic detectors and measurement of nuclear recoil. Issue: background! etc.
• Direct DM searches
• Indirect searches e.g. in astrophysics experiments
SUSY: SEARCHES (AT LEP)

- Direct DM searches
- Indirect searches e.g. in astrophysics experiments
- Searches at colliders: PETRA, SppS, HERA, LEP, Tevatron

- Fixed initial conditions
- Production of sparticles up to half CMS energy
- So far only exclusion of parameter regions!
SUSY: SEARCHES (AT LEP)

- Direct DM searches
- Indirect searches e.g. in astrophysics experiments
- Searches at colliders:

- Fixed initial conditions
- Production of sparticles up to half CMS energy
- So far only exclusion of parameter regions!
SUSY: SEARCHES (TEVATRON)

- Direct DM searches
- Indirect searches e.g. in astrophysics experiments
- Searches at colliders
Do we see a significant excess of data over SM expectation? Or can we exclude a certain (mass) hypothesis?

Define test statistics Q as ratio of likelihoods for s / no s hypotheses:

$$-2\ln Q = -2 \ln \frac{P_d(s+b)}{P_d(b)} = -2 \sum_i s_i + 2 \sum_i d_i \ln \left(1 + \frac{s_i}{b_i}\right)$$

Then perform toy experiments with and without s for different parameters (e.g. m_H):

1-CL_b: Probability to observe more s-like outcome in b-only case

CL_{s+b}: Probability to observe more b-like outcome in signal case
Do we see a significant excess of data over SM expectation? Or can we exclude a certain (mass) hypothesis? Define test statistics Q as ratio of likelihoods for s/no s hypotheses:

$$1-\text{CL}_b: \text{Probability to observe more s-like outcome in b-only case}$$

$$\text{CL}_{s+b}: \text{Probability to observe more b-like outcome in signal case}$$

$$-2\ln Q = -2\ln P_d^{s+b} - 2\ln P_d^b$$

$$\text{Observed in data}$$

$$s+b \text{ like}$$

$$\text{b like}$$
1-\(\text{CL}_b\): Probability to observe more s-like outcome in b-only case
\(\text{CL}_{s+b}\): Probability to observe more b-like outcome in signal case
No excess in 1-\(\text{CL}_b\) \(\Rightarrow\) Look at \(\text{CL}_s = \text{CL}_{s+b} / \text{CL}_b\):
If \(\text{CL}_s\) small, then signal is very unlikely \(\Rightarrow\)
\(\text{CL}_s < 5\% \Rightarrow\) exclusion at 95% confidence level.
Ratio of X-section excluded at 95% CL ($CL_s = 5\%$) and predicted SM-Higgs X-section!

Equally the factor by which SM-Higgs X-section has to be scaled to be excluded at 95% CL.
SUSY AT LHC (1 EXAMPLE)

Inclusive spectra as fastest way to discovery of SUSY-like physics.

Challenging – requires excellent understanding of all detector components with little data!
SUSY discovery “easy”, but interpretation challenging (ILC!)
- need to measure masses to identify model (parameters)
- but 2 LSPs ➔ no mass peaks of decaying resonances!

One way: mass edges!
Intermediate states define max dilepton mass:
\[m_{\ell\ell}^{\text{max}} = \frac{1}{m_{\tilde{\chi}_2^0}} \sqrt{\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\chi}_R^0}^2\right)\left(m_{\tilde{\chi}_R^0}^2 - m_{\tilde{\chi}_1^0}^2\right)} \]

Works also for other combinations, e.g.
\[m_{q\ell\ell}^{\text{max}} = \frac{1}{m_{\tilde{\chi}_2^0}} \sqrt{\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\chi}_L^0}^2\right)\left(m_{\tilde{\chi}_L^0}^2 - m_{\tilde{\chi}_1^0}^2\right)} \]

Different end-points ➔ clues about masses!
Derived Mass Spectrum of SUSY Particles mSUGRA LE+LHC 1 fb⁻¹

1σ Environment
2σ Environment
3σ Environment
Most Probable Value
Mean Value

Derived Particle Mass [GeV]

h⁰ A⁰ H⁰ H⁺χ₁⁰χ₂⁰χ₃⁰χ₄⁰χ₁⁺χ₂⁺τᵣ Lᵣ τ₁ τ₂ q_R q_L b₁ b₂ τ₁ τ₂ g
SUSY: COMBINED CMS RESULTS

CMS Preliminary

\(\sqrt{s} = 7 \text{ TeV}, \int \text{Ldt} = 1 \text{ fb}^{-1} \)

- 2011 Limits
- 2010 Limits

\(\tan \beta = 10, \ A_0 = 0, \ \mu > 0 \)

\(\tilde{g}, \tilde{q}, \tilde{g} \)

CDF \(\tilde{g}, \tilde{q}, \tan \beta = 5, \ \mu < 0 \)

D0 \(\tilde{g}, \tilde{q}, \tan \beta = 3, \ \mu < 0 \)

LEP2 \(\tilde{\chi}_{1}^\pm \)

LEP2 \(\tilde{\tau} \)

LHC will deliver the answer to the SUSY question!
But we have to understand (interpret) it. Need precision (LC)?
Fittino results (thanks to P. Bechtle) for SM+mSUGRA fit to measured observables.

\[\text{Chi}^2 = 20.6 \text{ at } 23 \text{ d.o.f} \]

Parameter	**Value and Uncertainty**
\(\tan \beta \) | \(13.2 \pm 7.2 \)
\(M_{12} \) | \(331.5 \pm 86.6 \)
\(M_0 \) | \(76.2^{+79.8}_{-29.2} \)
\(A_0 \) | \(383.1 \pm 647.0 \)
\(\alpha_s \) | \(0.1177 \pm 0.0020 \)
\(\alpha_{em} \) | \(127.924 \pm 0.014 \)
\(m_Z \) | \(91.1871 \pm 0.0020 \)
\(m_t \) | \(172.4 \pm 1.1 \)
\(G_F \) | \(1.16637 \cdot 10^{-5} \pm 1 \cdot 10^{-10} \)
SUSY not only solution to SM problems! Also other models introduce some necessary new particles to achieve goals.

Requests:
- electrically neutral
- heavy to participate in gravitation
- stable

⇒ Weakly interacting massive particles (WIMPs) with masses 100 GeV – 1 TeV to satisfy requirements (mainly explain DM density via correct annihilation cross section).
GRAND UNIFIED THEORIES (GUTs)

1/α₁, 1/α₂, 1/α₃

Couplings “almost” unify at high scales

SM “almost” simple and beautiful!

\[L_{GWS} = \sum_f (\bar{\Psi}_f (i\gamma^\mu \partial_\mu - m_f) \Psi_f - eQ_f \bar{\Psi}_f \gamma^\mu \Psi_f A_\mu) + \]

\[+ \frac{g}{\sqrt{2}} \sum_i (a_L^i \gamma^\mu b_L^i W_\mu^+ + \bar{b}_L^i \gamma^\mu a_L^i W_\mu^-) + \frac{g}{2c_w} \sum_f \bar{\Psi}_f \gamma^\mu (I_f^2 - 2s_w^2 Q_f - I_f^3 \gamma_5) \Psi_f Z_\mu + \]

\[- \frac{1}{4} |\partial_\mu A_\nu - \partial_\nu A_\mu - ie(W_\mu^- W_\nu^+ - W_\mu^+ W_\nu^-)|^2 - \frac{1}{2} |\partial_\mu W_\nu^+ - \partial_\nu W_\mu^+ + \]

\[- ie(W_\mu^+ A_\nu - W_\nu^+ A_\mu) + ig' c_w (W_\mu^+ Z_\nu - W_\nu^+ Z_\mu)|^2 + \]

\[- \frac{1}{4} |\partial_\mu Z_\nu - \partial_\nu Z_\mu + ig' c_w (W_\mu^- W_\nu^- - W_\mu^+ W_\nu^+)|^2 + \]

\[- \frac{1}{2} M_\eta^2 \eta^2 - \frac{g M_\eta}{8 M_W} \eta^3 - \frac{g' M_\eta^2}{32 M_W} \eta^4 + |M_W W_\mu^+ + \frac{g}{2 \eta} W_\mu^+|^2 + \]

\[+ \frac{1}{2} |\partial_\mu \eta + i M_Z Z_\mu + \frac{ig}{2 c_w} \eta Z_\mu|^2 - \sum_f \frac{g m_f}{2 M_W} \bar{\Psi}_f \Psi_f \eta \]
GRAND UNIFIED THEORIES (GUTs)

Assumption:
SM SU(3) × SU(2) × U(1) embedded in larger symmetry, e.g.

\[SU(5) \supset SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \]

Spontaneous breaking of GUT symmetry \(G_{\text{GUT}} \) at high scale!

- Existence of leptoquarks!
- Explanation of electric charge:
 sum of charges in multiplet 0!
- Prediction for weak mixing angle.
- Proton should decay!
- Complex models: unification!

\[SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \subset SU(5) \subset SO(10) \subset E(6) \]
LEPTOQUARKS (AT HERA)

In GUT-inspired models: (always) leptoquarks – bosons with \(L,B \neq 0 \).

At colliders: test of (general) models with certain assumptions
e.g. BRW model (renormalisable, LQ-coupling invariant under \(SU(3) \times SU(2) \times U(1) \)…)

Searches for LQ: resonant production @HERA:

Signature: high-\(p_T \) jets with and \(e/E_{T,\text{miss}} \). Indistinguishable from NC/CC!!
LEPTOQUARKS AT HERA

... but different kinematics → optimise selection.

Search for LQ in invariant-mass spectrum of jet and $e/E_{T,\text{Miss}}$.

Unfortunately no signal

⇒ for each mass hypothesis:

exclusion limit for coupling λ!

For $M_{LQ} < 320$ GeV in s channel: strong limits for large $q(x)$ because

$$\sigma_{\text{prod}} \propto \lambda^2 q(x = M_{LQ}^2 / s_{ep})$$

Higher masses: little sensitivity in t channel.
LEPTOQUARKS IN PP(BAR)

At Tevatron / LHC:
Search for 2j+2l
(note: σ independent
of λ because of gauge
couplings to gluons)

Tevatron: no indications,
limits at about 270 GeV

LHC: similar to Tevatron!
Issue: background suppression:
- QCD: require two high-\(p_T\) leptons!
- Drell-Yan: require high \(M_{ll}\) and \(M_{lq}\)!
- tt production: require low \(E_{T,\text{miss}}\)!

Simulations: clear resonance
peaks visible. Limit: 400 GeV!
At Tevatron / LHC:
Search for 2j+2l
(note: \(\sigma \) independent of \(\lambda \) because of gauge couplings to gluons)

Tevatron: no indications, limits at about 270 GeV

LHC: similar to Tevatron!
Issue: background suppression:
- QCD: require two high-\(p_T \) leptons!
- Drell-Yan: require high \(M_{ll} \) and \(M_{lq} \)!
- \(tt \) production: require low \(E_{T,\text{miss}} \)!

Simulations: clear resonance peaks visible. Limit: 400 GeV!
Remember hierarchy problem:

\[M_{Pl} = \sqrt{\frac{\hbar c}{G_N}} \approx 1.2 \cdot 10^{19} \text{ GeV} \gg M_{EW} \]

Or: why gravitation so weak?
Consequence: \(m_H \) unstable!

Arkani-Hamed, Dimopoulos, Dvali (ADD, 98): 4+n dimensions !!!
- \(n \) additional dimensions in which (only) gravitation is felt – gravitation weak because it is dilute!
- \(M_{Pl} \) seems large only in 4D; real fundamental scale \(M_D \) smaller, gravitation in 4+n stronger!

\(\Rightarrow \) Hierarchy problem solved if \(M_D \sim 1\text{TeV} \)

Without proof:

With \(M_D \sim 1\text{TeV} \):

\[M_{Pl}^2 = 8\pi R^n M_D^{n+2} \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(R)</th>
<th>Change of law of gravity: (n=1) excluded!</th>
<th>ED as solution? Now question: size of (M_D)!</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(R \approx 10^{12} \text{ m})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(R \approx 0.4 \text{ mm})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(R \approx 1 \text{ nm})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(R \approx 1 \text{ fm})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ED curled up (compactified) \(\rightarrow \) gravitons behave like particle in box \(\rightarrow \) equidistant mass states: Kaluza-Klein towers!

Large extra dimensions: \(\Delta M \) small \(\rightarrow \) continuum of states!

Direct production: G couples weakly \(\rightarrow \) ET, Miss, mono-photons, monojets

Virtual KK exchange \(\rightarrow \) modification of Xsections.

Mass limits: \(O(2 \text{ TeV})! \)
ED curled up (compactified) \rightarrow gravitons behave like particle in box \rightarrow equidistant mass states: Kaluza-Klein towers!

Large extra dimensions: ΔM small \rightarrow continuum of states!

SEARCH FOR EXTRA DIMENSIONS

![Graph showing the lower limit of M_D versus the number of extra dimensions with different color bands for CDFII, D0 (RunI), and LEP Combined.](image)

![Graph showing the M_D (TeV) versus $p_{T,\text{cut}}$ (GeV) with different curves for different values of δ.](image)

ATLFAST

![Graph showing the mass limits for different values of S_{max} and S_{min}.](image)

$\delta = n$

100 fb^{-1}

$s = 14 \text{ TeV}, 1 \text{ year at } 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
ED searches with virtual gravitons: Deviation from SM expectation?

So far nothing observed ➔ limits!
ED searches with virtual gravitons: Deviation from SM expectation?

So far nothing observed \(\rightarrow\) limits!

Final LHC discovery potential (depending on n):
- \(10 \text{ fb}^{-1}\): \(M_D = 5.1-6.5 \text{ TeV}\)
- \(100 \text{ fb}^{-1}\): \(M_D = 6.5-7.8 \text{ TeV}\)
Z’, NEW PHYSICS IN DIJETS

Remember: Dijet spectra:
Excellent description by NLO pQCD!!

Many new physics models
decaying to a pair of jets
Example: Z’→qq (GUT-like models)
Z’, NEW PHYSICS IN DIJETS

Remember: Dijet spectra:
Excellent description by NLO pQCD!!

Many new physics models
decaying to a pair of jets
Example: $Z’ \rightarrow qq$ (GUT-like models)

Comparison of data and theories / models \rightarrow limits?
- New heavy physics mainly central ($\chi = 1$).
- Complementarity: χ sensitive to spin, centrality ratio to mass
Z’, NEW PHYSICS IN DIJETS

<table>
<thead>
<tr>
<th>Model and Analysis Strategy</th>
<th>95% C.L. Limits (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected</td>
</tr>
<tr>
<td>Excited Quark q^*</td>
<td></td>
</tr>
<tr>
<td>Resonance in (m_{jj})</td>
<td>2.07</td>
</tr>
<tr>
<td>(F_\chi(m_{jj}))</td>
<td>2.12</td>
</tr>
<tr>
<td>Randall-Meade Quantum Black Hole for (n = 6)</td>
<td></td>
</tr>
<tr>
<td>**Resonance in (m_{jj})</td>
<td>3.64</td>
</tr>
<tr>
<td>(F_\chi(m_{jj}))</td>
<td>3.49</td>
</tr>
<tr>
<td>(\theta_{np}) Parameter for (m_{jj} > 2) TeV</td>
<td>3.37</td>
</tr>
<tr>
<td>11-bin (\chi) Distribution for (m_{jj} > 2) TeV</td>
<td>3.36</td>
</tr>
<tr>
<td>Axigluon</td>
<td></td>
</tr>
<tr>
<td>**Resonance in (m_{jj})</td>
<td>2.01</td>
</tr>
<tr>
<td>Contact Interaction (\Lambda)</td>
<td></td>
</tr>
<tr>
<td>(F_\chi(m_{jj}))</td>
<td>5.7</td>
</tr>
<tr>
<td>(F_\chi) for (m_{jj} > 2) TeV</td>
<td>5.2</td>
</tr>
<tr>
<td>11-bin (\chi) Distribution for (m_{jj} > 2) TeV</td>
<td>5.4</td>
</tr>
</tbody>
</table>
Possible explanations: quark substructure, compositeness, contact interactions, …

Later explained in terms of re-definition of gluon density of the proton.

Don’t see new physics where it is not; don’t hide new physics in re-parametrisation of old …
MODEL INDEPENDENT SEARCHES
Many ideas for physics beyond the Standard Model. The next 1.5 years will (hopefully) show us the path!