Free-Electron Laser

A) Motivation and Introduction

B) Theoretical Approach

C) Experimental Realization / Challenges

A) Motivation and Introduction

need for short wavelengths

why FELs?

free electron \leftrightarrow wave interaction

micro-bunching

amplifier and oscillator

self amplifying spontaneous emission (SASE)

why SASE?

coherent radiation

need for short wavelengths

LYSOZYME MW=19,806

state of the art: structure of biological macromolecule

reconstructed from diffraction pattern of protein crystal:

needs $\approx 10^{15}$ samples

crystallized \rightarrow not in life environment

the crystal lattice imposes restrictions on molecular motion

images courtesy Janos Hajdu, slide from Jörg Rossbach

need for short wavelengths - 2

SINGLE MACROMOLECULE

courtesy Janos Hajdu

resolution does not depend on sample quality needs very high radiation power @ $\lambda \approx 1$ Å can see dynamics if pulse length < 100 fs

we need a radiation source with • very high peak and average power

- wavelengths down to atomic scale $\lambda \sim 1$ Å
- spatially coherent
- monochromatic
- fast tunability in wavelength & timing
- sub-picosecond pulse length

why FELs?

principle of a quantum laser

problem & solution: active medium \rightarrow free electron – EM wave interaction

free electron \leftrightarrow wave Interaction

micro-bunching

longitudinal motion to 1st order is trivial, **but**

micro-bunching is a 2^{nd} order effect \rightarrow coupled theory of particle motion and wave generation

transverse bunch structure is much larger than longitudinal sub-structure \rightarrow 1d theory with plane waves

amplifier and oscillator

instability, driven by noise, growth until amplifier saturates

amplified noise:

self amplifying spontaneous emission (SASE)

uniform random distribution of particles at entrance incoherent emission of EM waves (noise, wide bandwidth) amplification (\rightarrow resonant wavelength, micro-bunching) saturation, full micro modulation, coherent radiation

why SASE?

oscillator needs resonator but there are no mirrors for wavelengths < 100 nm

alternative: seed laser + harmonic generation + amplifier

coherent radiation

B) Theoretical Approach

particle dynamics: undulator motion

about particles

independent parameter: z

particle dynamics: interaction with EM wave

longitudinal equation of motion

phase space and pendulum

FEL low gain theory

micro bunching

electrodynamics (1D)

FEL high gain theory (1D)

continuous phase space: Vlasov equation

FEL third order equation

particle dynamics: undulator motion

example: FLASH

$$\lambda_u = 27 \text{ mm}$$

$$K \approx \frac{0.934}{\text{cmT}} B_0 \lambda_u \approx 1.2$$
$$W \approx 1 \text{ GeV} \quad \rightarrow \gamma \approx 1957$$
$$\hat{x} = \frac{K}{\gamma k_u} = 2.6 \,\mu\text{m}$$
$$\hat{z} = \frac{K^2}{8\gamma^2 k_u} = 0.2 \,\text{nm}$$

new independent parameter: z

"reference particle": $\gamma_0 \quad v_0 \quad \overline{v}_0$ $t_0(z) = \frac{z}{\overline{v}_0} + \frac{\hat{z}_0}{\overline{v}_0} \cos 2k_u z$ $x_0(z) = \hat{x}_0 \sin k_u z$

ordinary particles:

 $\gamma_{\nu}(z) \quad v_{\nu}(z) \quad \overline{v}_{\nu}(z) \quad \text{approach: nearly constant on one period } \lambda_{u}$ $t_{\nu}(z) \approx t_{\nu,i} + \int_{0}^{z} \frac{dz}{\overline{v_{\nu}}(z)} + \frac{\hat{z}_{0}}{\overline{v_{0}}} \cos 2k_{u}z \qquad = T_{\nu}(z) + t_{0}(z)$ $\downarrow \gamma \quad \downarrow \gamma$

energy parameter: $\eta_{\nu} = \frac{\gamma_{\nu} - \gamma_0}{\gamma_0}$

particle dynamics: interaction with EM wave

particle dynamics: interaction with EM wave

averaged vs. undulator period
$$\left\langle \frac{dW_v}{dz} \right\rangle = ?$$
 $T_v(z) \approx const$

estimation without longitudinal oscillation $\left\langle \cos(k_{u}z + \psi + \hat{z}_{0}\cos 2k_{u}z)\cos k_{u}z \right\rangle = \frac{1}{2}\cos\psi$

$$\begin{vmatrix} \frac{dW_{\nu}}{dz} = -\frac{eE_0K}{2\gamma}\cos\psi_{\nu} \\ \psi_{\nu} = k_l cT_{\nu}(z) \qquad \text{ponderomotive phase} \end{cases}$$

with longitudinal oscillation: replace K by
$$\hat{K} = K \left[J_0 \left(\frac{K^2}{4 + 2K^2} \right) - J_1 \left(\frac{K^2}{4 + 2K^2} \right) \right]$$

(modified undulator parameter)

example: FLASH

$$K \approx \frac{0.934}{\text{cmT}} B_0 \lambda_u \approx 1.2$$
$$W \approx 1 \text{ GeV} \quad \rightarrow \gamma \approx 1957$$
$$\hat{x} = \frac{K}{\gamma k_u} = 2.6 \,\mu\text{m}$$
$$\hat{z} = \frac{K^2}{8\gamma^2 k_u} = 0.2 \,\text{nm}$$

$$\lambda_{l} = \frac{\lambda_{u}}{2\gamma^{2}} \left(1 + \frac{K^{2}}{2} \right) \approx 6 \text{ nm}$$
$$\hat{K} = K \left[J_{0} \left(\frac{K^{2}}{4 + 2K^{2}} \right) - J_{1} \left(\frac{K^{2}}{4 + 2K^{2}} \right) \right]$$
$$\hat{K} = 1.06$$

longitudinal equation of motion

new longitudinal parameters
$$t_{\nu}(z) = T_{\nu}(z) + t_{0}(z) = \frac{\Psi_{\nu}(z)}{k_{l}c} + t_{0}(z)$$

 $\overline{\eta_{\nu}(z)} = \frac{W_{\nu}(z)}{W_{0}} - 1$ relative energy deviation
with $\frac{d\Psi_{\nu}}{dz} = k_{l}c\frac{dT_{\nu}(z)}{z} = \frac{k_{l}c}{\overline{v_{\nu}}} - \frac{k_{l}c}{\overline{v_{0}}} \approx 2k_{u}\eta_{\nu}$ and $W_{0} = m_{e}c^{2}\gamma_{0}^{2}$ follow
particle equations
 $\overline{\frac{d\eta_{\nu}}{dz}} \approx -\frac{eE_{0}\hat{K}}{2m_{e}c^{2}\gamma_{0}^{2}}\cos\Psi_{\nu}$
 $\frac{d}{dz}\Psi_{\nu} \approx 2k_{u}\eta_{\nu}$

phase space and pendulum

trajectories in phase space

15 particles with different initial conditions

FEL low gain theory

neglect change of field amplitude

indirect gain calculation

FEL low gain theory

neglect change of field amplitude

micro-bunching

Fourier analysis \rightarrow amplitude of micro modulation

$$\hat{I} \propto \sum \exp(-i\psi_{\nu})$$

(fundamental mode)

electrodynamics (1D)

approach with slowly varying amplitude

$$J_{z}(z,t) \sim \operatorname{Re}\left\{\hat{I}_{1}(z)\exp(ik_{l}(z-t/c))\right\} + \cdots$$
$$E_{x}(z,t) \sim \operatorname{Re}\left\{\hat{E}_{x}(z)\exp(ik_{l}(z-t/c))\right\} + \cdots$$

$$\frac{d}{dz}\hat{E}_{x}(z) = -\frac{\mu_{0}c\hat{K}}{4\gamma_{0}}\hat{I}_{1}$$

FEL high gain theory (1D)

 $\frac{d\eta_{\nu}}{dz} \approx -\frac{e\hat{K}}{2m_e c^2 \gamma_0^2} \operatorname{Re}\left\{\hat{E}_x \exp(i\psi_{\nu})\right\}$ $\frac{d}{dz}\psi_{\nu}\approx 2k_{u}\eta_{\nu}$ $\hat{I} \propto \sum \exp(-i\psi_{v})$ $\frac{d}{dz}\hat{E}_{x}\approx-\frac{\mu_{0}c\hat{K}}{4\nu}\hat{I}_{1}$

particle equations

micro modulation

electrodynamics

FEL high gain theory (1D)

FEL high gain theory (1D)

continuous phase space, Vlasov equation

many point particles $\psi_{\nu}, \eta_{\nu} \rightarrow$ continuous density distribution $F(\psi, \eta, z)$

continuous phase space, Vlasov equation

phase space density: $F(\psi, \eta, z)$

continuity equation: $\nabla \cdot \mathbf{J}(\psi, \eta, z) + \frac{\partial F}{\partial z} = 0$ with "current density" $\mathbf{J}(\psi, \eta, z) = \begin{pmatrix} \psi' \\ \eta' \end{pmatrix} F(\psi, \eta, z)$ therefore $\frac{\partial(\psi'F)}{\partial \psi} + \frac{\partial(\eta'F)}{\partial \eta} + \eta' \frac{\partial F}{\partial \eta} + \frac{\partial F}{\partial z} = 0$

with particle equations $\psi' = \frac{\partial \psi}{\partial z} = f(\eta, z)$ $\eta' = \frac{\partial \eta}{\partial z} = g(\psi, z)$

Vlasov equation:

$$\psi' \frac{\partial F}{\partial \psi} + \eta' \frac{\partial F}{\partial \eta} + \frac{\partial F}{\partial z} = 0$$
 or $\frac{dF}{dz} = 0$

FEL 3rd order equation

perturbation approach: $F(\psi, \eta, z) \approx F_0(\eta - \eta_{off}) + \operatorname{Re}\left\{\hat{F}_1(\eta, z)\exp(i\psi)\right\}$

$$\frac{d^{3}\hat{E}_{x}}{dz^{3}} + 4ik_{u}\eta_{\text{off}} \frac{d^{2}\hat{E}_{x}}{dz^{2}} - 4k_{u}^{2}\eta_{\text{off}}^{2} \frac{d\hat{E}_{x}}{dz} - i\Gamma^{3}\hat{E}_{x} = 0$$

with energy offset
$$\eta_{\rm off} = \langle \eta_{\nu} \rangle = \frac{\langle \gamma_{\nu} \rangle - \gamma_0}{\gamma_0}$$

gain parameter
$$\Gamma = \sqrt[3]{\frac{1}{4} \frac{e}{m_e} \frac{\mu_0}{c} \frac{I}{A} \frac{k_u \hat{K}^2}{\gamma_0^3}}$$

beam current *I* beam cross-section *A*

solution
$$\hat{E}_x(z) = A_1 \exp \alpha_1 z + A_2 \exp \alpha_2 z + A_3 \exp \alpha_3 z$$

FEL 3rd order equation

$$\hat{E}_x(z) = A_1 \exp \alpha_1 z + A_2 \exp \alpha_2 z + A_3 \exp \alpha_3 z$$

no energy offset: $\eta_{\rm off}=0$ or $\langle \gamma_{\nu} \rangle = \gamma_{0}$

power gain length: $P(z) \rightarrow |A_1^2 \exp 2\alpha_1 z| \propto \exp(z\sqrt{3\Gamma})^{1/L_g}$

C) Experimental Realization / Challenges

Linac Coherent Light Source - LCLS

scales

challenges

rf gun

bunch compression

European X-FEL

Linac Coherent Light Source- LCLS

	scale	es
photon wavelength	$\lambda_l \propto 10^{-10} \mathrm{m} \propto \lambda_u$	γ^{2}
cooperation length	$L_l \propto 10^{-8} \mathrm{m}$	
transverse oscillation	$\hat{x} \propto 10^{-6} \mathrm{m}$	(undulator trajectory)
bunch length	$L_b \propto 10^{-5} \mathrm{m}$	
bunch width	$\sigma_w^{\text{bunch}} \simeq 10^{-5} \text{ m}$	width of photon beam $\sigma_w^{\text{wave}} \sim \sqrt{\lambda_l L_R}$
undulator period	$\lambda_{u} \propto 10^{-2} \mathrm{m}$	overlap of particle beam
power gain length	$L_g \approx 110 \mathrm{m}$	with photon beam
Rayleigh length	L_R	(scale of widening of photon beam)
saturation length	$L_s \approx 10 L_g \dots 20 L_g < 1$	L_{u}
undulator length	$L_u \propto 100 \mathrm{m}$	
total length	$L \propto 10^3 \mathrm{m}$	

challenges

$$\lambda_l = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

$$L_g = \frac{1}{\sqrt{3}} \left(\frac{4mc}{\mu e} \frac{\gamma^3 \lambda_u}{K^2} \frac{\sigma_r^2}{I} \right)^{1/3}$$

- $\lambda_l \rightarrow \text{\AA}$
- $\bullet \mbox{ Energy} \rightarrow 10 \ .. \ 20 \ \mbox{GeV}$
- gain length $L_g < \sim 10 \text{ m}$
- high peak current >~ kA
- transverse beam size $\sigma_r \propto 10 \ \mu m$
- energy spread
- overlap electron-photon beam

(undulator parameter $K \propto 1$)

transverse: generate low emittance beam preservation of emittance

longitudinal: compression

acceleration

diagnostic and steering

undulator alignment

 $\sigma_r^2 \propto \lambda_l L_g$

space charge forces:

$$E_{sq} \propto \frac{1}{\gamma^2} \frac{q}{\sigma_r^2}$$

rf gun

typical parameters of FLASH & European XFEL:

$$q \propto 0.1 \,\mathrm{nC}$$
 $E \propto 5 \,\mathrm{MeV}$ $I \propto 5 \,\mathrm{A}$
 $\gamma \propto 10$
longitudinal compression 1 \rightarrow 0.001 needed ! (5 kA)

magnetic bunch compression

 $\gamma >>1 \rightarrow$ velocity differences are too small for effective compression magnetic compression: path length depends on energy

beam dynamics with space charge and CSR effects

magnetic bunch compression - 2

European XFEL

European X-FEL - 2

superconducting cavity, 1.3 GHz $E_{\rm acc} \rightarrow$ 40 MeV/m 23.5 MeV/m are needed

FLASH tunnel: cryo module

European X-FEL - 3

	LCLS	SCSS	European XFEL	
Abbreviation for	Linac Coherent Light Source	Spring-8 Compact SASE Source	European X-Ray Free- Electron Laser	
Location	California, USA	Japan	Germany	
Start of commissioning	2009	2010	2014	
Accelerator technology	normal conducting	normal conducting	superconducting	
Number of light flashes per second	120	60	30 000 multi bunch	operatio
Minimum wavelength of the laser light	0.15 nanometres	0.1 nanometres	0.1 nanometres	
Maximum electron energy	14.3 billion electron volts (14.3 GeV)	6-8 billion electron volts (6-8 GeV)	17.5 billion electron volts (17.5 GeV)	
Length of the facility	3 Kilometer	750 Meter	3.4 Kilometer	
Number of undulators (magnet structures for light generation)	1	3	5	
Number of experiment stations	3-5	4	10	
Peak brilliance [photons / s / mm ² / mrad ² / 0.1% bandwidth]	8.5-10 ³²	5·10 ³³	5·10 ³³	

beamlines

