
Introduction to C++

Andreas Mussgiller*
DESY Summer Student Lectures
26/07/2011

* many slides courtesy of B. List

Introduction to C++

> Created by Bjarne Stroustrup in 1983
> Based on the programming language „C“
> Many extensions compared to „C“

 Object-oriented (OO) - classes
 Operator overloading
 References
 Templates
 Easily extendable - classes
 ...

> Became ISO standard in 1998
> Currently THE language in HEP

 Many things would become to complicated without OO

> A new standard is being developed C++0x
 many new features that make the life of a programmer

easier

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 2

http://en.wikipedia.org/wiki/C%252B%252B0x
http://en.wikipedia.org/wiki/C%252B%252B0x

Introduction to C++ - The Main Message Today

> C++ is a very powerful programming language
> C++ is one of the most complicated programming languages
> The best way to learn a programming language is by looking at code

 You will see many examples throughout this talk

> Not every written piece of code is good programming practice
> Many physicists think that physicists are good programmers by definition

 There are many physicists that are excellent programmers
 Most of us are physics result oriented programmers which mostly yields horrible code

> You will not learn C++ nor will you become an expert today
> I will cover the basics and a few common topics that you might find useful
> Follow the coding conventions of your project
> Please never use a statement like this: „I know the code looks horrible,

but it works“
 Make sure that other people are able to understand the code you have written in a

reasonable amount of time
Andreas Mussgiller | C++ Introduction | 26/07/2011 | 3

Introduction to C++ - This Talk

> I added links to online references where possible
 http://www.cplusplus.com/reference
 Hyperlinks will be underlined

> All examples are available for download via
 http://mussgill.web.cern.ch/mussgill/public_files/CPPIntro.tgz
 The names of the files in question are shown on the slides
 On your DESY afs account do the following

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 4

$> wget http://mussgill.web.cern.ch/mussgill/public_files/CPPIntro.tgz
$> tar -xvzf CPPIntro.tgz
CPPIntro/area.cc
CPPIntro/area.h
...
$> cd CPPIntro
$> make

http://www.cplusplus.com/reference
http://www.cplusplus.com/reference
http://mussgill.web.cern.ch/mussgill/public_files/CPPIntro.tgz
http://mussgill.web.cern.ch/mussgill/public_files/CPPIntro.tgz

Our First C++ Program

> Green boxes will be used for example
code

> Gray boxes for commands to be
executed on the command line

> cout is declared in iostream
> Function main is the entry point for the

operating system

> C++ is case sensitive: cout, Cout and
COUT are not the same

> std:: is a namespace qualifier

> Every statement has to be terminated
with a semicolon

> Function main must return an integer

> g++ is the C++ compiler

> HelloWorld is the executable produced
by the compiler

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 5

#include <iostream>

int main()
{
 std::cout << "Hello, World!!!" << std::endl;
 return 0;
}

HelloWorld.cc

$> g++ -o HelloWorld HelloWorld.cc
$> ./HelloWorld
Hello, World!!!
$>

On the command line:

#include <cmath>

#include "area.h"

double area(double radius)
{
 double result = M_PI * radius * radius;
 return result;
}

Functions

> Almost everything is done via functions
 see main function

> Functions have to be declared
 e.g. in area.h
 here: function area takes one

argument (radius) and returns a
double

> #ifndef, #define and #endif ensures
that function is only declared once

> Comments start with //
> Comments can be enclosed in /* ... */
> Functions have to be defined

 e.g. in area.cc

> M_PI is declared in cmath
> Indirection via double variable result not

necessary

> Indentation makes code readable

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 6

#ifndef area_h_
#define area_h_

double area(double radius);

#endif // area_h_

area.h

area.cc

http://www.cplusplus.com/reference/clibrary/cmath
http://www.cplusplus.com/reference/clibrary/cmath

Using Functions

> Inclusion of area.h makes compiler
aware of whatever is declared in area.h
 area.h can declare more than one

function

> cin reads from standard input
 declared in iostream

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 7

#include <iostream>

#include "area.h"

int main()
{
 double radius;
 std::cout << "Please enter radius: ";
 std::cin >> radius;
 std::cout << "Area is "
 << area(radius)
 << std::endl;
 return 0;
}

calcarea.cc

$> g++ -o calcarea calcarea.cc area.cc
$> ./calcarea
Please enter radius: 2.0
Area is 12.5664
$>

http://www.cplusplus.com/reference/iostream/cin
http://www.cplusplus.com/reference/iostream/cin
http://www.cplusplus.com/reference/iostream/iostream
http://www.cplusplus.com/reference/iostream/iostream

Intermezzo - Compiler Warnings and Errors

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 8

#include <iostream>

#include "area.h"

int main()
{
 double radius;
 std::cout << "Please enter radius: ";
 std::cin >> radius
 ...

calcarea.cc
$> g++ -o calcarea calcarea.cc area.cc
calcarea.cc: In function ‘int main()’:
calcarea.cc:10: error: expected `;' before ‘std’
$>

> Compiler warning and error messages can
give a very good idea of what is going wrong

> They might be cryptic sometimes

> Don´t be afraid of them

$> g++ -o calcarea calcarea.cc
Undefined symbols for architecture x86_64:
 "area(double)", referenced from:
 _main in cc5DZqXF.o
ld: symbol(s) not found for architecture x86_64
collect2: ld returned 1 exit status
$>

> Declaration of function area is not
enough

> Executable also needs actual
definition of function

> This is the message you get on a
64Bit MacBook with g++ 4.2.1

Built-in Types

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 9

> Size depends on actual system architecture
 long: 64Bit MacBook: 64 bit

> ISO standard defines limits that have to be guarantied by systems/compilers

> All integer types are also available as unsigned

Type Meaning Size Range Resolution
int integer 32 Bits ± 2147483648 1

long long integer ≥ 32 Bits ± 2147483648 1

short short integer ≥ 16 Bits ± 32768 1

char character 8 Bits ± 127 1

float single precision floating point 32 Bits ± 3⋅10±38 1.2⋅10-7

double double precision floating point 64 Bits ± 2⋅10±308 2.2⋅10-16

bool boolean 8 Bits 0/1, true/false 1

unsigned short unsigned short integer 16 Bits 0 -> 65535 1

#include <limits>
...
 std::cout << "Range: " << std::numeric_limits<float>::min() << " "
...

from limits.cc:

http://www.cplusplus.com/reference/std/limits
http://www.cplusplus.com/reference/std/limits

Operators I - Arithmetic Operators

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 10

> Evaluate right side of =
> Assign result to left side of =

Operator Meaning

- sign change

* multiplication

/ division

% modulus

+ addition

- subtraction

#include <iostream>

int main()
{
 int a = 1;
 std::cout << "a = " << a << std::endl;

 a = -2;
 std::cout << "a = " << a << std::endl;

 float b = 0;
 b = 4 * 3;
 std::cout << "b = " << b << std::endl;
 b = b - 3;
 std::cout << "b = " << b << std::endl;

 ...

 return 0,
}

operatorsI.cc

$> g++ -o operatorsI operatorsI.cc
$> ./operatorsI
a = 1
a = -2
b = 12
b = 9
a = 13
a = 1
$>

Operators II

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 11

same as a = a -3; a is now -2

same as b = b + 1; b is now 2
same as b = b - 1; b is again 1

pre-increment
same as b = b + 1;
the new value of b is assigned to a
a = 2; b = 2

post-increment
same as b = b + 1
the old value is assigned to a
a = 2; b = 3

#include <iostream>

int main()
{
 int a = 1;

 a -= 3;

 int b = 1;
 b++;
 b--;

 a = ++b;
 a = b++;

 return 0,
}

operatorsII.cc

a += 2 is the same as a = a + 2
a *= 2 is the same as a = a * 2
a /= 2 is the same as a = a / 2

Operators III - Relational Operators

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 12

> Relational operators evaluate to a boolean
• 0 or 1, false or true

> Beware: == is a comparison whereas = is an assignment

> Assignments also have a value

Operator Meaning

== equal

!= not equal

< less

<= less or equal

> greater

>= greater or equal

#include <iostream>

int main()
{
 int a = 1, b = 0;

 if (a!=0) std::cout << "a != 0" << std::endl;
 if (b==0) std::cout << "b == 0" << std::endl;

 if (a>=b) std::cout << "a >= b" << std::endl;

 if ((b=3)) std::cout << "b != 0 : b = " << b << std::endl;
 if ((b=0)==0) std::cout << "b == 0 : b = " << b << std::endl;

 return 0;
}

operatorsIII.cc

$> g++ -o operatorsIII \
 operatorsIII.cc
$> ./operatorsIII
a != 0
b == 0
a >= b
b != 0 : b = 3
b == 0 : b = 0
$>

Operators IV - Logical Operators

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 13

Operator Meaning

! not

!= exclusive or

|| or

&& and

#include <iostream>

int main()
{
 int a = 1, b = 0;

 if (!(a==0)) std::cout << "a != 0" << std::endl;

 if (!b) std::cout << "!b" << std::endl;

 if (a!=0 && b==0)
 std::cout << "a != 0 && b == 0" << std::endl;

 if (a!=0 || b!=0)
 std::cout << "a != 0 || b != 0" << std::endl;

 if (a!=0 != b!=0)
 std::cout << "a != 0 != b != 0" << std::endl;

 return 0;
}

operatorsIV.cc

$> g++ -o operatorsIV \
 operatorsIV.cc
$> ./operatorsIV
a != 0
!b
a != 0 && b == 0
a != 0 || b != 0
a != 0 != b != 0
$>

Operators V - Bitwise Operators

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 14

Operator Meaning

~ compliment

& and

| or

^ exclusive or

int main()
{
 int a = 0x4; // bit pattern 0100
 int b = 0x3; // bit pattern 0011
 int c;

 std::cout << "a & b = " << (a & b) << std::endl;
 std::cout << "a | b = " << (a | b) << std::endl;
 c = a | b;
 std::cout << "a & c = " << (a & c) << std::endl;
 std::cout << "a | c = " << (a | c) << std::endl;
...

operatorsV.cc
$> g++ -o operatorsV \
 operatorsV.cc
$> ./operatorsV
a & b = 0
a | b = 7
a & c = 4
a | c = 7
...
$>

> Bit by bit operation on integer types

> Don´t confuse logical operators and bitwise operators

> 4 && 10 = true (any non-zero value is true)

> 4 & 10 = 0

27 26 25 24 23 22 21 20

4 0 0 0 0 0 1 0 0

10 0 0 0 0 1 0 1 0

Operators VI - Input and Output Operators

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 15

#include <iostream>

int main()
{
 int i;
 double d;
 std::cout << "Please enter an integer : ";
 std::cin >> i;
 std::cout << "Please enter a double : ";
 std::cin >> d;

 std::cout << "The integer is " << i
	 << " and the double is " << d
	 << std::endl;

 std::cerr << "no error\n";

 return 0;
}

operatorsVI.cc

$> g++ -o operatorsVI \
 operatorsVI.cc
$> ./operatorsVI
Please enter an integer : 3
Please enter a double : 2
The integer is 3 and the double is 2
no error
$>

> Every program has three default input and
output streams
• cin is the so-called standard input
• cout is the standard output
• cerr is the error output

> << is the output operator

> >> is the input operator

> more on file input and output follows later

> Depending on your shell you can redirect
cout and cerr to files, i.e. a log file

http://www.cplusplus.com/reference/iostream/cin
http://www.cplusplus.com/reference/iostream/cin
http://www.cplusplus.com/reference/iostream/cout
http://www.cplusplus.com/reference/iostream/cout
http://www.cplusplus.com/reference/iostream/cerr
http://www.cplusplus.com/reference/iostream/cerr
http://www.cplusplus.com/reference/iostream/ostream/operator%253C%253C
http://www.cplusplus.com/reference/iostream/ostream/operator%253C%253C
http://www.cplusplus.com/reference/iostream/istream/operator%3E%3E
http://www.cplusplus.com/reference/iostream/istream/operator%3E%3E

Numerical Functions

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 16

Function Meaning Remark
sin(x) sine

cos(x) cosine

tan(x) tangent

asin(x) arc sine

acos(x) arc cosine

atan(x) arc tangent π/2 < result < π/2

atan(x, y) arc tangent x/y -π < result < π

exp(x) exponential

log(x) natural logarithm

log10(x) logarithm with base 10

abs(x) absolute value

fabs(x) absolute value

sqrt(x) sqare root

pow(x, y) x to the power of y only for x > 0

pow(x, i) x to the integer power i also for x < 0

> Available via #include <cmath>
> Don´t forget the std::

http://www.cplusplus.com/reference/clibrary/cmath
http://www.cplusplus.com/reference/clibrary/cmath

Type Conversions

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 17

> C/C++ has many pre-defined type conversions that are applied automatically
• integer types (int, short, char, long long) to floating point types (float, double)
- values may be truncated
- see table with types and corresponding ranges

• floating point types to integer types
- the number is truncated towards zero: 1.7 ➟ 1, -2.3 ➟ -2

• number types to bool: 0 ➟ false, non-zero ➟ true
• arithmetic expressions between integers result in integers
- 3/2 ➟ 1, 7/8 ➟ 0

• arithmetic expressions between floats (and integers) result in floats
- 1.5*2.0 ➟ 3, 4.0/5 ➟ 0.8, 4/5.0 ➟ 0.8

> Explicit conversion from one type to the other: casts

• other casts exist: dynamic_cast and reinterpret_cast
• the <int> indicates that static_cast is a template function
• some details on templates follow later

 double d = 3.45;
 int i = static_cast<int>(d); // explicit cast from double to integer

Control Structures - If - Else

> Code in block after if is executed if
condition is true
 condition in brackets after if

> A single statement after if(...), else if(...) or
else does not require curly braces but
improves readability

> Multiple statements that are to be
executed conditionally must be enclosed
in curly braces

> ? : is a special operator that allows inline
conditional code
 no temporary variable needed in the

example
 can be used also as argument to a

function

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 18

double maximum1(double a, double b)
{
 double result;
 if (a > b) {
 result = a;
 } else {
 result = b;
 }
 return result;
}

double maximum2(double a, double b)
{
 double result = (a > b) ? a : b;
 return result;
}

double maximum3(double a, double b)
{
 return (a > b) ? a : b;
}

...
 double result = std::sqrt((v >= 0) ? v : -v);
...

Control Structures - While, Do - While Loops

The block is executed as long as i < n
The block may be skipped in case n = 0

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 19

double power(double x, int n)
{
 double result = 1;
 int i = 0;
 while (i<n) {
 result *= x;
 ++i;
 }
 return result;
}

double exponential(double x)
{
 /*
 exp(x) = 1 + x + x^2/2 + ... x^i/i!
 */
 double result = 1, xx = 1;
 int i = 1;
 do {
 xx *= x/i;
 result += xx;
 ++i;
 } while (xx > 0.0000001 * result);
 return result;
}

The block is executed as long as
condition is true
The block is executed at least once

> A for-loop is the same as a while-loop

> for (initialization; condition; increment) ...
> initialization part can have multiple comma-

separated statements

> increment part can have multiple comma-
separated statements

Control Structures - For Loops

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 20

double power(double x, int n)
{
 double result = 1;
 int i = 0;
 while (i<n) {
 result *= x;
 ++i;
 }
 return result;
}

double power(double x, int n)
{
 double result = 1;
 for (int i = 0; i<n; ++i) {
 result *= x;
 }
 return result;
}

> A class can be considered a new type

> A class can have member variables

> A class can have member functions and operators

> public means accessible from everywhere

> member variables are typically named such that
they can be distinguished from local variables
• here: _
• Your software projects coding conventions

will tell you what to use

Classes - The Basics

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 21

#ifndef Vector3D_h_
#define Vector3D_h_

class Vector3D
{
 public:
 double x_, y_, z_;
};

#endif // Vector3D_h_

#ifndef calcVectorLength_h_
#define calcVectorLength_h_

#include "Vector3D.h"

double calcVectorLength(Vector3D);

#endif // calcVectorLength_h_

#include <cmath>

#include "calcVectorLength.h"

double calcVectorLength(Vector3D v)
{
 return std::sqrt(v.x_*v.x_ + v.y_*v.y_ + v.z_*v.z_);
}

Vector3D.h

calcVectorLength.h
calcVectorLength.cc

Classes - The Basics cont.

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 22

#include <iostream>

#include "Vector3D.h"
#include "calcVectorLength.h"

int main()
{
 Vector3D v;
 v.x_ = 2.7;
 v.y_ = 4.2;
 v.z_ = 9.8;
 std::cout << "The length of Vector3D v is "
	 << calcVectorLength(v) << std::endl;
 Vector3D w = v;
 std::cout << "The length of Vector3D w is "
	 << calcVectorLength(w) << std::endl;
 return 0;
}

useVector3D.cc

Create a Vector3D with variable name v

Set the x, y, z components

Create another Vector3D with variable
name w and assign Vector3D v to it

$> g++ -o useVector3D useVector3D.cc
$> ./useVector3D
The length of Vector3D v is 10.9986
The length of Vector3D w is 10.9986
$>

Classes - Constructors & Destructor

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 23

> A class can have several constructors

> The one without argument is called the
default constructor

> All initialization is done in or triggered
by the constructor

> A class has one destructor

> The destructor is called when the
object is deleted

> Cleanup should be done in the
destructor

#ifndef Vector3D_h_
#define Vector3D_h_

class Vector3D
{
 public:
 Vector3D();
 Vector3D(double x, double y, double z);
 ~Vector3D();
 double x_, y_, z_;
};

#endif // Vector3D_h_

Vector3D.h

#include "Vector3D.h"

Vector3D::Vector3D()
 :x_(0), y_(0), z_(0) { }

Vector3D::Vector3D(double x, double y, double z)
 :x_(x), y_(y), z_(z) { }

Vector3D::~Vector3D() { }

Vector3D.cc

Intermezzo - Pointers

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 24

#include <iostream>

int main()
{
 int i = 1234;
 int * p = &i;
 std::cout << "i = " << i << std::endl;
 std::cout << "p = " << p << std::endl;
 std::cout << "*p = " << *p << std::endl;

 *p = 4321;
 std::cout << "i = " << i << std::endl;
 std::cout << "p = " << p << std::endl;
 std::cout << "*p = " << *p << std::endl;

 int **pp = &p;
 std::cout << "pp = " << pp << std::endl;
 std::cout << "*pp = " << *pp << std::endl;
 std::cout << "**pp = " << **pp << std::endl;

 **pp = 5678;
 std::cout << "i = " << i << std::endl;
 std::cout << "*p = " << *p << std::endl;
 std::cout << "**pp = " << **pp << std::endl;

 return 0;
}

Pointers.cc

$> g++ -o Pointers Pointers.cc
$> ./Pointers
i = 1234
p = 0x7fff5fbfdb9c
*p = 1234
i = 4321
p = 0x7fff5fbfdb9c
*p = 4321
pp = 0x7fff5fbfdb90
*pp = 0x7fff5fbfdb9c
**pp = 4321
i = 5678
*p = 5678
**pp = 5678
$>

> Every object (int, double, instance of a class) is
located somewhere in memory

> Pointers point to the address of the object in
memory

> Pointers are objects themselves and therefore
have a location in memory

> Pointers have knowledge of the type of object
they point to

> Pointers can point to other pointers

Intermezzo - References

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 25

#include <iostream>

int main()
{
 int i = 1234;
 int & r = i;

 std::cout << "i = " << i << std::endl;
 std::cout << "r = " << r << std::endl
	 << std::endl;

 r = 4321;
 std::cout << "i = " << i << std::endl;
 std::cout << "r = " << r << std::endl;

 return 0;
}

References.cc

$> g++ -o References References.cc
$> ./References
i = 1234
r = 1234

i = 4321
r = 4321
$>

> A reference is like the object itself

> It is just a reference to the object, not a
copy

> References are very similar to pointers

> References have knowledge of the type of
object they reference

> References did not exist in standard C

Intermezzo - Passing Arguments

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 26

#include <iostream>

int main()
{
 Vector3D v(2.7, 4.2, 9.8);
 Vector3D *p = &v;
 Vector3D &r = v;

 std::cout << "start of test"
 << std::endl;

 std::cout << "by value" << std::endl;
 calcVectorLength(v);

 std::cout << "by pointer"
 << std::endl;
 calcVectorLengthByPointer(p);

 std::cout << "by reference"
 << std::endl;
 calcVectorLengthByReference(r);

 std::cout << "end of test"
 << std::endl;

 return 0;
}

useVector3D_2.cc

$> g++ -o useVector3D_2 useVector3D_2.cc
$> ./useVector3D_2
Vector3D::Vector3D(double x, double y, double z)
start of test
by value
Vector3D::Vector3D(const Vector3D &v)
Vector3D::~Vector3D()
by pointer
by reference
end of test
Vector3D::~Vector3D()
$>

> Arguments can be passed to functions in
three different ways
• by value
• by pointer
• by reference

> Passing by value is always creating a copy of
the object

> Use references if possible

> Calculating the length of a vector is not nicely
implemented

> It is not done in a C++ kind of way

> The vector knows how its length is calculated

> We don´t need an extra function, instead we
should be able to ask the Vector3D for its length

> Add a so-called member function length() that
does the job

> Member functions have direct access the
member variables

Classes - Member Functions

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 27

#ifndef Vector3D_h_
#define Vector3D_h_

class Vector3D
{
 public:
 double length();
 double x_, y_, z_;
};

#endif // Vector3D_h_

Vector3D.h

#include <cmath>

#include "Vector3D.h"

Vector3D::length()
{
 return std::sqrt(x_*x_ + y_*y_ + z_*z_);
}

Vector3D.cc

> Member variables should be hidden from
direct public access

> Make x_, y_ and z_ private

> Does not change implementation of length()
member variables are always accessible
within member functions

> Getter and setter functions are provided to
allow public access to the vector
components

> const in getter function means that calling
the function does not change the object itself

> By using getter and setter functions one
decouples the functionality of the class from
the actual member variables

 Vector3D could use polar coordinates for
storage and the user would not have to bother
about it

 The data members can change without
having an effect on the user as long as the
interfaces stay as they are

Classes - Getter & Setter Functions

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 28

#ifndef Vector3D_h_
#define Vector3D_h_

class Vector3D
{
 public:
 void setX(double x) { x_ = x; }
 double getX() const { return x_; }
 ...
 double length();

 private:
 double x_, y_, z_;
};

#endif // Vector3D_h_

Vector3D.h

#include <cmath>

#include "Vector3D.h"

Vector3D::length()
{
 return std::sqrt(x_*x_ + y_*y_ + z_*z_);
}

Vector3D.cc

> A (member) function taking a reference to
an object as argument can in principle
modify the object

> This can be prevented by passing a const
reference

> Within the function, only member functions
declared as const can then be used

> const after the function declaration tells
the compiler that the function may only be
used for constant objects

> const is a promise that the object is not
changed

> void setX(double x) const { x_ = x; }
does not make any sense and results in a
compilation error

Classes - Constness

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 29

#ifndef Vector3D_h_
#define Vector3D_h_

class Vector3D
{
 public:
 void setX(double x) { x_ = x; }
 void getX() const { return x_; }
 ...
 double scalarProduct(const Vector3D & v);
 ...
};

#endif // Vector3D_h_

Vector3D.h

double Vector3D::scalarProduct(const Vector3D & v)
{
 return getX() * v.getX() + getY() * v.getY() + getZ() * v.getZ();
}

Vector3D.cc

> Vector3D v is created on the stack

> Objects created on the stack are automatically
deleted when the variable goes out of scope

> Vector3D * v2 = new Vector3D() is created on the
heap

> An object created on the heap lives until it is
explicitly deleted

> Not deleting results in a memory leak

Intermezzo - Object Lifetime, Scope, Heap & Stack

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 30

void simpleFunction1()
{
 Vector3D v;
}

void loopFunction()
{
 for (int i=0;i<2;i++) {
 Vector3D v;
 }
}

int main()
{
 simpleFunction1();
 loopFunction();

 Vector3D v1;
 Vector3D * v2;
 Vector3D * v3;

 v2 = new Vector3D();
 v3 = new Vector3D();

 delete v2;

 return 0;
}

Scope.cc

$> g++ -o Scope Scope.cc
$> ./Scope
Vector3D::Vector3D()
Vector3D::~Vector3D()
Vector3D::Vector3D()
Vector3D::~Vector3D()
Vector3D::Vector3D()
Vector3D::~Vector3D()
Vector3D::Vector3D()
Vector3D::Vector3D()
Vector3D::Vector3D()
Vector3D::~Vector3D()
Vector3D::~Vector3D()
$>

1

2 3

4

5
6

1

4
5

6
5

45

4

1

2 3

1

2
2

3
3

> In HEP we use Monte Carlo simulations to study physics processes
 Need a description of the detector geometry - this will be our example

> The most generic object within a geometry is a Volume
 Volume will be our base class
 It contains everything common to all specific types of volumes

> Specific types of volumes (Box, Sphere, etc.) inherit functionality and
members from base class

 Volume will be our base class
 It contains everything common to all specific types of volumes

> Box, Sphere, etc can in turn be base class to even more specific volumes

> Defining the class hierarchy in a reasonable way is basically most of the
work and does not involve actual programming

Class Hierarchies - Introduction

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 31

Box
dX, dY, dZ

Sphere
radius

Composite
daughters

IntersectionUnion

Volume
Name
Position
Orientation
Material
Color

Class Hierarchies - Volume Base Class

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 32

> Base class contain all
common member variables
and member functions
 name and position is

common to all volumes

> strings will be covered later

> keyword virtual allows for
reimplementation of member
function in derived class

> virtual ... = 0 makes class
purely virtual
 Instance of Volume can not

be constructed
 An instance of a derived

class is only constructible if
getVolume is implemented

> protected allows access
within derived class but
prevents public access

class Volume
{
 public:
 Volume(const std::string &name);
 virtual ~Volume() { }

 const std::string & getName() const { return name_; }
 const Vector3D& getPosition() const
 { return position_; }

 virtual double getVolume() const = 0;
 virtual bool isInside(double x, double y, double z) const
 { return false; }

 protected:
 void setPosition(const Vector3D& p) { position_ = p; }
 void setPosition(double x, double y, double z) {
 position_.setX(x);
 position_.setY(y);
 position_.setZ(z); }

 private:
 std::string name_;
 Vector3D position_;
};

Volume.h

Class Hierarchies - Box Class

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 33

> Box is derived from Volume and
inherits common member variables
and member function

> Box re-implements isInside
> Box implements getVolume
> The constructor takes the

dimensions and position of the box

> The position has to be set from
within Box since
Volume::setPosition is protected

class Box : public Volume
{
 public:
 Box(const std::string &name,
 double dx, double dy, double dz,
 double px, double py, double pz);
 virtual ~Box() { }
 ...
 double getVolume() const;
 bool isInside(double x, double y, double z) const;

 private:
 double dX_, dY_, dZ_;
};

Box.h

#include "Box.h"

int main()
{
 Volume v("test");
 Box b("Box",
	 1, 2, 3,
	 10, 11, 12);
 b.setPosition(0,0,0);

testGeometry.cc $> g++ -o testGeometry testGeometry.cc
error: cannot declare variable ‘v’ to be of
abstract type ‘Volume’
...
error: ‘void Volume::setPosition(double,
double, double)’ is protected
$>

Class Hierarchies - Box Class cont.

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 34

> position_(px, py, pz) would not
work because Volume::position_
is private

> One has to use setPosition(...)

> ditto here

> Volume::position_ being private
forces one to use getPosition()

Box::Box(const std::string &name,
	 double dx, double dy, double dz,
	 double px, double py, double pz)
 :Volume(name), dX_(dx), dY_(dy), dZ_(dz) {
 setPosition(px, py, pz);
}

double Box::getVolume() const
{
 return getDX()*getDY()*getDZ();
}

bool Box::isInside(double x, double y, double z) const
{
 return ((getPosition().getX() - getDX()/2.0 < x &&
 getPosition().getX() + getDX()/2.0 > x) &&
 (getPosition().getY() - getDY()/2.0 < x &&
 getPosition().getY() + getDY()/2.0 > x) &&
 (getPosition().getY() - getDZ()/2.0 < x &&
 getPosition().getY() + getDZ()/2.0 > x));
}

Box.cc

Class Hierarchies - Composite Class

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 35

> positions px, py and pz default to 0 -
constructor only needs the name

> getVolume and isInside are not
implemented
 An instance of Composite can not

be constructed
 Only derived classes Union and

Intersection can know how to
implement getVolume and
isInside

> Daughter volumes are stored in an
array with maximum size of 10
 In a real implementation one would

use something dynamic

> Composite takes over ownership of
daughter volumes
 One has to take care of deleting

daughter volumes in destructor

class Composite : public Volume
{
 public:
 Composite(const std::string &name,
 double px=0, double py=0, double pz=0);
 virtual ~Composite();

 void addDaughter(Volume * daughter);

 private:
 int nDaughters;
 Volume * daughter_[10];
};

Composite.h

Composite::~Composite()
{
 for (int i=0;i<nDaughters;++i) {
 delete daughter_[i];
 }
}

void Composite::addDaughter(Volume * daughter)
{
 daughter_[nDaughters++] = daughter;
}

Composite.cc

Class Hierarchies - Composite Class cont.

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 36

> Daughter volumes are owned by
Composite

> Double delete is possible

> A good design should prevent this

> Reminder: Passing by reference is
better than passing by pointer

> What about addDaughter ?
> Passing by reference is not a

solution because we want to pass
ownership to Composite

> Any idea?

int main()
{
 Composite comp("Composite");
 comp.addDaughter(new Box("Box1",
	 	 	 1, 1, 1,
	 	 	 -0.5, 0, 0));
 Box * box2 = new Box("Box2",
	 	 1, 1, 1,
	 	 +0.5, 0, 0);
 comp.addDaughter(box2);

 delete box2;

 return 0;
}

testGeometry.cc

$> g++ -o testGeometry testGeometry.cc
$> ./testGeometry
testGeometry(45765) malloc: *** error for object
0x100100200: pointer being freed was not allocated
*** set a breakpoint in malloc_error_break to debug
Abort trap
$>

Templates - Introduction

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 37

> The template mechanism allows to
pass type names as a parameter to a
function or a class

> Example: trivial array template class
 Ownership of objects is taken over

by Array
 Array has to delete elements
 Implementation actually has a

memory leak - any idea?

template <typename T, int size>
class Array
{
 public:
 Array() {
 for (int i=0;i<size;++i) storage_[i] = 0;
 }
 ~Array() {
 for (int i=0;i<size;++i) delete storage_[i];
 }
 void addAt(T* object, unsigned int position) {
 if (position>=size) return;
 if (storage_[position]!=0)
 delete storage_[position];
 storage_[position] = object;
 }
 T* at(unsigned int position) {
 if (position>=size) return 0;
 return storage_[position];
 }

 protected:
 T* storage_[size];
};

Array.h

int main()
{
 Array<Vector3D,10> array;

 array.addAt(new Vector3D, 2);
 array.addAt(new Vector3D, 1);

 array.addAt(new Vector3D, 10);
}

useArray.cc

The Standard Template Library (STL) Containers

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 38

> A container is an object that contains other objects

> The C++ standard library provides containers and iterators (STL framework)

> Containers can be lists, vectors, maps, etc. which optimized for specific task and performance

> The type of object stored in the container is one of the parameters for the container template
class

#include <vector>
#include <iostream>

void printVector(const std::vector<int> &v) {
 for (unsigned int i=0;i<v.size();++i)
 std::cout << v[i] << " ";
 std::cout << std::endl;
}

int main()
{
 std::vector<int> v(5); // reserve space for 5 ints
 printVector(v);
 v.push_back(4); // add one more int
 printVector(v);
 v[0] = 1; // set new value at index 0
 printVector(v);
}

testVector.cc $> g++ -o testVector testVector.cc
$> ./testVector
0 0 0 0 0
0 0 0 0 0 4
1 0 0 0 0 4
$>

http://www.cplusplus.com/reference/stl
http://www.cplusplus.com/reference/stl

Name Description Comment

vector Vector an array with dynamic size

deque Double ended queue fast insertion of elements at any position

list Double linked list efficient insertion and movement of elements

stack Last In - First Out (LIFO)

queue First In - FIrst Out (FIFO)

set associative container with values as keys unique element values

multiset associative container with values as keys allows
multiple keys per value

map associative container with key/value storage unique key values

multimap associative container with key/value storage and
multiple elements per key

bitset container for storing sequences of bits

STL Container Overview

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 39

> Grouped in sequence containers, container adaptors and associative containers

> Basically same functionality provided by all containers - chose container for best performance

http://www.cplusplus.com/reference/stl/vector
http://www.cplusplus.com/reference/stl/vector
http://www.cplusplus.com/reference/stl/deque
http://www.cplusplus.com/reference/stl/deque
http://www.cplusplus.com/reference/stl/list
http://www.cplusplus.com/reference/stl/list
http://www.cplusplus.com/reference/stl/stack
http://www.cplusplus.com/reference/stl/stack
http://www.cplusplus.com/reference/stl/queue
http://www.cplusplus.com/reference/stl/queue
http://www.cplusplus.com/reference/stl/set
http://www.cplusplus.com/reference/stl/set
http://www.cplusplus.com/reference/stl/multiset
http://www.cplusplus.com/reference/stl/multiset
http://www.cplusplus.com/reference/stl/map
http://www.cplusplus.com/reference/stl/map
http://www.cplusplus.com/reference/stl/multimap
http://www.cplusplus.com/reference/stl/multimap
http://www.cplusplus.com/reference/stl/bitset
http://www.cplusplus.com/reference/stl/bitset

STL Container Function Overview

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 40

Operation vector list queue set map Description
push_back X X X add element at end of container

push_front X add element at beginning of container

insert X X X X insert element at position

operator[] X X return reference to element

at X return reference to element

front X X X returns ref. to first element

back X X X returns ref. to last element

pop_back X X remove last element from container

pop_front X X remove first element from container

erase X X X X erase element from container

clear X X X X remove all elements

size X X X X X returns the number of elements in the container

find X X find an element via key

begin X X X X returns iterator referring to the beginning of the cont.

end X X X X returns iterator referring to the end of the container

rbegin X X X X returns reverse iterator referring to the beginning

rend X X X X returns reverse iterator referring to the end

STL Container - Iterators

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 41

> An iterator is an abstraction of a pointer to an element in a container

> Iterators can return the element in the collection they currently point to

> Iterators know where to find the next (and previous) element in the collection

> Iterators understand operations (++, --, +=, -=) and comparisons (==, !=)

int main()
{
 std::vector<int> v;
 v.push_back(3); v.push_back(4); v.push_back(5);

 for (std::vector<int>::iterator it = v.begin();
 it!=v.end();
 ++it) std::cout << *it << " ";
 std::cout << std::endl;

 for (std::vector<int>::reverse_iterator it = v.rbegin();
 it!=v.rend();
 ++it) std::cout << *it << " ";
 std::cout << std::endl;
}

$> g++ -o testSTLIterators \
 testSTLIterators.cc
$> ./testSTLiterators
3 4 5
5 4 3
$>

begin()

element[0] element[n-1]element[1] element[2] ...

end()

testSTLIterators.cc

STL Map Example

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 42

#include <map>
#include <iostream>

void printMap(const std::map<int,float> &m) {
 std::cout << m.size() << " elements: ";
 for (std::map<int,float>::const_iterator it = m.begin();
 it != m.end();
 ++it)
 std::cout << "(" <<it->first << "," << it->second << ") ";
 std::cout << std::endl;
}

int main()
{
 std::map<int,float> m;
 m[6] = 6.2;
 m[2] = 13.5;
 printMap(m);

 m[2] = 2.1;
 printMap(m);

 std::map<int,float>::iterator it = m.find(5);
 if (it != m.end()) std::cout << "value for key 5 is "
	 	 	 << it->second << std::endl;
 it = m.find(6);
 if (it != m.end()) std::cout << "value for key 6 is "
	 	 	 << it->second << std::endl;
}

testSTLMap.cc

$> g++ -o testSTLMap testSTLMap.cc
$> ./testSTLMap
2 elements: (2,13.5) (6,6.2)
2 elements: (2,2.1) (6,6.2)
value for key 6 is 6.2
$>

> A map is an associative
container that stores key-value
pairs

> Keys in the container are unique

> Container is sorted by keys

> The key can be accessed via
iterator::first

> The value can be accessed via
iterator::second

> find returns an iterator that
points to the found element or is
map::end()

Fill the map by key/value
assignment

re-assignment

find keys

http://www.cplusplus.com/reference/stl/map
http://www.cplusplus.com/reference/stl/map

STL Container - Algorithms

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 43

> The STL provides various algorithms that can be used on the container classes

> As an example we sort a vector of Vector3D by length

bool sortFunction(const Vector3D& v1, const Vector3D& v2) {
 return (v1.length()<v2.length());
}

int main()
{
 std::vector<Vector3D> v;
 v.push_back(Vector3D(3.1, 4.2, 6.1));
 v.push_back(Vector3D(2.7, 1.3, 3.9));
 v.push_back(Vector3D(7.3, 2.8, 5.2));

 std::cout << "before sorting:" << std::endl;
 for (std::vector<Vector3D>::iterator it = v.begin();
 it!=v.end();
 ++it) it->print();

 std::sort(v.begin(), v.end(), sortFunction);

 std::cout << "after sorting:" << std::endl;
 for (std::vector<Vector3D>::iterator it = v.begin();
 it!=v.end();
 ++it) it->print();
}

$> g++ -o testSTLSort testSTLSort.cc \
 Vector3D.cc
$> ./testSTLSort
before sorting:
Vector3D: (3.1, 4.2, 6.1) length = 8.0287
Vector3D: (2.7, 1.3, 3.9) length = 4.91833
Vector3D: (7.3, 2.8, 5.2) length = 9.38989
after sorting:
Vector3D: (2.7, 1.3, 3.9) length = 4.91833
Vector3D: (3.1, 4.2, 6.1) length = 8.0287
Vector3D: (7.3, 2.8, 5.2) length = 9.38989
$>

testSTLSort.cc

Pass Vector3D by reference

Fill the vector

Sort the vector using sortFunction

http://www.cplusplus.com/reference/algorithm
http://www.cplusplus.com/reference/algorithm

Random Notes - Strings

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 44

> At some point you will certainly have to print some sort of text from one of your programs

> A string is a sequence of characters

> The standard library provides a class string that helps to deal with character strings

#include <string>
#include <iostream>

int main()
{
 std::string s = "Hello, World!";
 std::cout << s << std::endl;

 size_t pos = s.find("World");
 s.replace(pos, 6, "Hamburg!");
 std::cout << s << std::endl;
}

$> g++ -o Strings1 Strings1.cc
$> ./Strings1.cc
Hello, World!
Hello, Hamburg
$>

Strings1.cc

Function Description

append append other string at the end

at returns character at certain position

begin returns iterator to the first character

end returns iterator to the end of string

clear empties the string

Function Description

compare compares to another string

erase erases characters from the string

find find another string within the string

insert insert another string into the string

length returns the number of characters

http://www.cplusplus.com/reference/string
http://www.cplusplus.com/reference/string

Random Notes - String Composition & Formatting

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 45

> Typically you want to compose a string with some proper formatting
 Decimal point always at the same position
 fixed number of digits after the decimal point ...

> The header files <sstream> (stringstream) and <iomanip> are your friends

> To many features to list them all
#include <string>
#include <sstream>
#include <iostream>

int main()
{
 std::ostringstream os;

 os << "Hello!!!\n\n";
 os << "pi = " << 3.1415926534 << "\n";
 os.precision(9);
 os << "pi = " << std::fixed << 3.1415926534 << "\n\n";

 os << "column 1 | column 2\n";
 os.width(8); os << 13 << " | ";
 os.width(8); os << 12.4 << "\n";
 os.width(8); os << 1 << " | ";
 os.width(8); os << 345.2 << "\n";

 std::string s = os.str();
 std::cout << s << std::endl;
}

$> g++ -o Strings2 Strings2.cc
$> ./Strings2
Hello!!!

pi = 3.14159
pi = 3.141592653

column 1 | column 2
 13 | 12.400
 1 | 345.200

$>

Strings2.cc

Random Notes - File I/O

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 46

> At some point you will have to either write data to a file or retrieve data from a file

> File I/O is covered by the header file <fstream>
> For output to file there is a class ofstream that behaves just like cout
> For input from file there is a class ifstream that behaves just like cin
> What about reading data from a table in a file

#include <fstream>
#include <iostream>

using namespace std;

int main()
{
 ifstream ifile("data.txt");

 char buffer[80];
 while (ifile.peek()=='#') {
 ifile.getline(buffer, 80);
 }

 cout.precision(6);
 float x, y;
 while (ifile >> x >> y) {
 cout.width(12); cout << fixed << x;
 cout.width(12); cout << fixed << y << endl;
 }
}

$> g++ -o ReadFile ReadFile.cc
$> cat data.txt
comments start with a '#'
x y = sin(x)
0.000000 0.000000
0.314159 0.309017
...
$>
$>
$> ./ReadFile
 0.000000 0.000000
 0.314159 0.309017
...
$>

ReadFile.cc

What is new in the example?

http://www.cplusplus.com/reference/iostream/ofstream
http://www.cplusplus.com/reference/iostream/ofstream
http://www.cplusplus.com/reference/iostream/cout
http://www.cplusplus.com/reference/iostream/cout
http://www.cplusplus.com/reference/iostream/ifstream
http://www.cplusplus.com/reference/iostream/ifstream
http://www.cplusplus.com/reference/iostream/cin
http://www.cplusplus.com/reference/iostream/cin

Random Notes - Namespaces

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 47

> Namespaces can be used to logically group things together

> Up to now you have seen the namespace std in this presentation

> using namespace std; allows to omit the std:: before everything inside the namespace

> However, unless you know what you are doing, I would stick to the explicit std::
> using namespace XXX; in header files can cause problems down the road

template<class T>
class vector
{
 public:
 vector() {}
};

$> g++ -o testNamespace testNamespace.cc
testNamespace.cc: In function ‘int main()’:
testNamespace.cc:6: error: reference to ‘vector’ is ambiguous
...
$>

myVector.h

#include <vector>

using namespace std;

void foo() { /* do something */ }

someHeader.h

#include "myVector.h"
#include "someHeader.h"

int main()
{
 vector<int> x;
 return 0;
}

testNamespace.cc

> Consider someHeader.h is not under our
control

> someHeader.h tries to forces us to use
std::vector

> Code does not compile and it is not the fault
of myVector.h and testNamespace.cc

> If at all, use using namespace XXX inside a
function definition

> In HEP we love fancy plots
 e.g. a histogram:

> In principle you have all C++ tools at hand to get something like this done

> How would you implement a simple histogram in C++ ?
 without the fancy graphics
 text output to screen is perfectly fine

Momentum [GeV/c]
0 0.2 0.4 0.6 0.8 1 1.2

C
ou

nt
s

1

10

210

310

410

510 Lacombe et al. PL B101 (1981) 139

Putting Everything Together

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 48

> A Histogram has a finite number of bins, a
upper and a lower edge

> Filling the histogram, i.e. incrementing the
number of counts for a certain bin

> Printing the histogram onto the screen

> When filling the histogram we need to find
the correct bin for a value on the x-axis

> For printing we need the upper and lower
edges for each bin on the x-axis

> We need to store the size of the histogram
in order to do the calculations (findBin etc)

> Content of histogram is stored in a map

> One could easily extend the class such
that reading and writing the histo is
possible
 writeToFile(const std::string & filename)
 readFromFile(const std::string & filename)

Putting Everything Together - A Simple Histogram Class

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 49

class Histo1D
{
 public:
 Histo1D(int nBins, double min, double max);
 ~Histo1D();

 void fill(double x);
 void print() const;

 protected:

 int findBin(double x) const;
 double binEdgeMin(int bin) const;
 double binEdgeMax(int bin) const;

 private:
 int nBins_;
 double min_;
 double max_;
 std::map<int,int> content_;
};

Histo1D.h

> Histogram is filled with acos taking [-1,1]
as argument

> rand() returns a pseudo-random integer in
the range [0,RAND_MAX]

> Please never use rand() for any scientific
work

> There are real random number generators
out there

Testing the Simple Histogram Class

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 50

int main()
{
 Histo1D h(20, 0.0, M_PI);

 for (int i=0;i<10000;++i) {
 double v = std::rand();
 double x = std::acos(2.0*(v/RAND_MAX)-1.0);
 h.fill(x);
 }

 h.print();

 return 0;
}

testHisto1D.h $> g++ -o testHisto1D testHisto1D.cc \
 Histo1D.cc
$> ./testHisto1D
Number of entries: 10000
Maximum: 817
Underflows: 0
Overflows: 0
 0.00 - 0.16 : ##
 0.16 - 0.31 : ######
 0.31 - 0.47 : ########
 0.47 - 0.63 : ##########
 0.63 - 0.79 : #############
 0.79 - 0.94 : ###############
 0.94 - 1.10 : ################
 1.10 - 1.26 : ##################
 1.26 - 1.41 : ####################
 1.41 - 1.57 : ####################
 1.57 - 1.73 : ###################
 1.73 - 1.88 : ###################
 1.88 - 2.04 : #################
 2.04 - 2.20 : #################
 2.20 - 2.36 : ###############
 2.36 - 2.51 : #############
 2.51 - 2.67 : ###########
 2.67 - 2.83 : ########
 2.83 - 2.98 : #####
 2.98 - 3.14 : ##
$>

http://www.cplusplus.com/reference/clibrary/cstdlib/rand
http://www.cplusplus.com/reference/clibrary/cstdlib/rand
http://www.cplusplus.com/reference/clibrary/cstdlib/rand
http://www.cplusplus.com/reference/clibrary/cstdlib/rand

Summary

> C++ is a complicated but very powerful programming language

> Object-oriented programming allows
 close coupling between data and functions that manipulate the data
 hiding of the internal details while providing an interface
 splitting the code into small pieces (classes) that are individually simple and easy to maintain

> C++ is easily extendable
 Write your own class and you have extended C++ by a new type
 STL is mighty powerful

> I have not covered quite a few things
 Exceptions
 Operator overloading
 Design patters ...

> Reminder
 The best way to learn a programming language is by looking at code
 Not every written piece of code is good programming practice
 When writing code, please do it such that also other people can understand
 Stick to the coding conventions of the project you work on

> http://www.cplusplus.com is a good source for documentation and reference

Andreas Mussgiller | C++ Introduction | 26/07/2011 | 51

http://www.cplusplus.com
http://www.cplusplus.com

