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Applications of Accelerators (1)

Particle colliders for High Energy Physics (HEP) experiments

• fix target experiments:

• two beams collision experiments:
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Applications of Accelerators (1)

Particle colliders for High Energy Physics (HEP) experiments

• fix target experiments:

• two beams collision experiments:
HEP detector
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Applications of Accelerators (1)

Particle colliders for High Energy Physics experiments

Example:  the Large Hadron Collider (LHC) at CERN

superconducting magnets
(inside a cryostat)

8.6 km

Mont BlancLake Geneva Geneva
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Applications of Accelerators (2)

B

• structural analysis of crystalline materials
• X-ray crystallography (of proteins)
• X-ray microscopy
• X-ray absorption (or emission) spectroscopy
• …

Light sources for biology, physics, chemistry… experiments

Electromagnet
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Example:  Doppel-Ring-Speicher (DORIS)
‘double ring store’  at DESY

experimental stations
synchrotron DORIS injection e-/e+

e-/e+ beam

synchrotron light

built between 1969 and 1974
HEP exp. until 1983
synchrotron rad. since 1980
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Ribosome

Applications of Accelerators (2)

X-ray crystallography

X-rays

=

Ada Yonath
Leader of MPG Ribosome
Structure Group at DESY
1986-2004

2009 Nobel Prize of Chemistry
together with T. Steitz and
V. Ramakrishnan
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Example:  Doppel-Ring-Speicher (DORIS)
‘double ring store’  at DESY

experimental stations
synchrotron DORIS injection e-/e+

e-/e+ beam

synchrotron light

synchrotron rad. until 2012
HEP exp. from 2012

history

future

built between 1969 and 1974
HEP exp. until 1983
synchrotron rad. since 1980

accelerator
control room
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> About 120 accelerators for research in “nuclear and particle 
physics”

> About 70 electron storage rings and electron linear accelerators      
used as light sources (so-called ‘synchrotron radiation sources’)

> More than 7,000 accelerators for medicine
radiotherapy (>7,500), radioisotope production (200)

ion implantation (>9,000) ,  electron cutting and welding (>4,000) …
> More than 18,000 industrial accelerators
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> About 120 accelerators for research in “nuclear and particle 
physics”

> About 70 electron storage rings and electron linear accelerators      
used as light sources (so-called ‘synchrotron radiation sources’)

> More than 7,000 accelerators for medicine
radiotherapy (>7,500), radioisotope production (200)

ion implantation (>9,000) ,  electron cutting and welding (>4,000) …
> More than 18,000 industrial accelerators

< 1%
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Medical applications

For radioisotope production

Applications of Accelerators (3)

For radiotherapy and radiosurgery:
• x-rays and gamma-rays

• ions (from protons to atoms with atomic number up to 18, Argon)

• neutrons

proton beam   +   stable isotope
transmutation

radioactive isotope
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Medical applications

For radioisotope production
For example: 

p

Oxygen-18 + positron

97% of decays

Applications of Accelerators (3)

18 MeV proton accelerator Oxygen-18 (stable)
target

Fluorine-18  (half-life time = 110 min.)

(transmutation)
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Medical applications

For radioisotope production
For example: 

p

Fluorine-18  (half-life time = 110 min.)

Applications of Accelerators (3)

18 MeV proton accelerator Oxygen-18
target

Fludeoxyglucose (18F)

(transmutation)
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Positron Emission
Tomography (PET)

Applications of Accelerators (3)

Medical applications

g

g

detectors
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For industrial applications:

Applications of Accelerators (4)

approx. numbers from 2007 (worldwide)

Application
Ion implantation ~ 9500
Electron cutting and welding ~ 4500
Electron beam and x-ray irradiators ~ 2000
Ion beam analysis (including AMS) ~ 200
Radioisotope production (including PET) ~  900
Nondestructive testing (including security) ~  650
Neutron generators (including sealed tubes) ~ 1000

with energies up to 15 MeV
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For industrial applications:
an example: electron beam welding

‘deep welding effect’

up to 15 cm

acceleration up to 60-200 keV

Applications of Accelerators (4)

magnets as
‘focusing lenses’
as well as
‘deflectors’

electron beam
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Many millions of television sets, oscilloscopes using CRTs (Cathode Ray Tube)

CRT (Cathode
Ray Tube)

TV

oscilloscope

Applications of Accelerators (5)
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Many millions of television sets, oscilloscopes using CRTs (Cathode Ray Tube)

Applications of Accelerators (5)

acceleration

magnets as ‘focusing lenses’
as well as ‘deflectors’

25 frames / s

625
lines
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Geiger-Marsden experiment:
the gold foil experiment (1909)

Thomson model of the atom (1904)

alpha particles

expected
result

1 in 8000 reflected with θ > 90°

shooting with 10000 km/s, a few coming back !

Rutherford model of the atom (1911)
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Geiger-Marsden experiment:
the gold foil experiment (1909)

alpha particles

Rutherford model of the atom (1911)

N(θ)

θ

Thomson-model prediction

Measurement and 
Rutherford-model prediction

scattering angle
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Van de Graaff generator

Acceleration with an electrostatic field

maximum voltage ~ 25 MV

Cockcroft-Walton generator

voltage multiplier

AC

DC
400 keV p Lithium-7

(1932)

maximum voltage < 1 MV
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Acceleration with an electrostatic field

Van der Graaff generator: invented in 1929
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Acceleration with an electrostatic field

V=0 V=0
V=0V=0

beam

Tandem Van der Graaff accelerator
tandem = “two things placed one behind the other”

V=12 MV
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Acceleration with an electrostatic field

12 MV-Tandem Van de Graaff Accelerator
at MPI Heidelberg, GE

20 MV-Tandem
at Daresbury, UK



19/07/2011

13

Pedro Castro |  Introduction to Accelerators  |  20th July 2011  |  Page 25

Limitation of electrostatic fields

breakdown
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Replica of the Widerøe accelerator
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Acceleration using Radio-Frequency (RF) generators

Widerøe (1928):  apply acceleration voltage several times to particle beam

- + - + - +
charged particle

p

RF-generator
-
+

E

metallic ‘hollow’ cylinders
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Acceleration using Radio-Frequency (RF) generators

Widerøe (1928):  apply acceleration voltage several times to particle beam

- + - + - +
charged particle

p

RF-generator

p

RF-generator

-+ - + - +

-
+

E

E

+
-

half a period later:
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Restrictions of RF

> particles travel in groups called bunches

> bunches are travelling synchronous with RF cycles

> vE Δ→Δ
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Acceleration using Radio-Frequency (RF) generators

β < 1

original Widerøe drift-tube principle

222
RF

p
RF

p
RF

p c
vTv λβλ

⋅=⋅=⋅

RF-generator

p

relativistic β
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Acceleration using Radio-Frequency (RF) generators

β ≈ 1   (ultra relativistic particles)

p

RF-generator

2/RFλ

> only low freq. (<10 MHz) can be used

drift tubes are impracticable for ultra-relativistic particles (β=1)

only for very low β particles

Limitations of drift tube accelerators:

RF

RF
tube f

cL
22

βλβ == 30 m for β=1 and f=10 MHz
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Widerøe drift-tube
principle

Alvarez drift-tube (1946) structure

Cyclotron (1929), E. Lawrence
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Resonant cavities

Alvarez drift-tube (1946) structure:
RF resonator

E E
pp
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50kinE MeV=

Examples

DESY proton linac 
(LINAC III)

GSI Unilac
(GSI: Heavy Ion Research Center)

Darmstadt, Germany

Protons/Ions
E ≈ 20 MeV per nucleon 
β ≈ 0.04 … 0.2 

β ≈ 0.3

p
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p

RF-generator
-
+

E
Widerøe drift-tube

E

+

+

-

-

+

+

-

-

+

+

-

-

+

+

-

-Alvarez drift-tube

p

- + - + - +
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Charges, currents and electromagnetic fields

E

+

+

-

-

+

+

-

-

+

+

-

-

+

+

-

-

I
. . .
. . .

. . .

. . .
. . .
. . .

. . .

. . .

B

B

a quarter of a period later:a quarter of a period later:

Alvarez drift-tube

LC circuit (or resonant circuit) analogy:

p

. . .

. . .

L

C

+ -

L

I p

C
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Charges, currents and electromagnetic fields

+

+

+

+

+

+

+

+

-

-

-

-
-

-

-

-

E

I

. . .

. . .
. . .
. . .

. . .

. . .
. . .
. . .B

B

3 quarters of a period later:
3 quarters of a period later:

Alvarez drift-tube

p

p

half a period later:

half a period later:
L

C

+-

L

I

C
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Resonant cavities

Alvarez drift-tube structure:

RFβλ

t

V

min. length of the tube

RF resonator

higher frequencies possible shorter accelerator

preferred solution
for ions and protons
up to few hundred MeV

twice longer tubes

pp

voltage between tubes
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Examples
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Acceleration using Radio-Frequency (RF) generators

original Widerøe drift-tube principle

RF-generator

p

drift-tube linac “rolled up“

first concept of the ‘cyclotron’ (1929)
(from E. Lawrence)
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Acceleration using Radio-Frequency (RF) generators

original Widerøe drift-tube principle

RF-generator

p

drift-tube linac “rolled up“

first concept of the ‘cyclotron’ (1929)
(from E. Lawrence)

B
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Cyclotron

RF-generator
accelerated ions

ion source

deflector

B

two ‘hollow’ metallic Dees
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. . . .
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. . . .

. . . .

. . . .

Bvq
dt
pdF

rr
rr

×==

charge velocity

of the particle

magnetic field

momentum

B (perpendicular)

circular motion: 

Bq
vmR

R
vmBvqFvB =⇒==→⊥

2rr

R

time for one revolution: .22 const
Bq

m
v

RT === ππ
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Cyclotron

.2 const
Bq

mT == π (for non-relativistic velocities)

.2 constB
m
q

T
===

πωcyclotron frequency:

protons up to 15 MeV   (β = 0.1)

… in a uniform constant magnetic field:
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Velocity as function of energy β as function of γ

2
2
1 mvEkin =Newton:

Einstein:

2

2
2

1 β
γ

−
==+=

mcmcEEE kino

relativisticc
v

=β

relativistic γ = 3 :
2.8 GeV protron
1.5 MeV electron
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Cyclotron at Fermilab, Chicago IL, USA
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Circular accelerators

synchrotron: R is constant,
increase B synchronously with E of particle

vacuum chamber
magnet

accelerating device

injector

straight sections

Bq
vmR

R
vmBvqFvB =⇒==→⊥

2rr
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Circular accelerators

Low Energy Antiproton Ring (LEAR) at CERN
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DESY (Deutsches Elektronen Synchrotron)

DESY: German electron synchrotron, 1964,      7.4 GeV
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DESY (Deutsches Elektronen Synchrotron)

DESY: German electron synchrotron, 1964,      7.4 GeV

accelerator
control room
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Electromagnet

permeability of iron = 300…10000 larger than air
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Dipole magnet

beam

air gap

flux lines

beam
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Dipole magnet cross section

Max. B max. current large conductor cables

Power dissipated: 2IRP ⋅=
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Dipole magnet cross section

water cooling channels
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Dipole magnet cross section
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Dipole magnet

beam

iron

current
loops
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Dipole magnet cross section

C magnet + C magnet = H magnet
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Dipole magnet cross section (another design)

beamforce
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Dipole magnet cross section (another design)

beam

water cooling tubes

current leads
Power dissipated: 2IRP ⋅=

beam
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Superconducting  dipole magnets

superconducting dipoles

LHC

HERA
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Superconductivity

12.5 kA
normal conducting cables

12.5 kA
superconducting cable
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Superconductivity

resistance

critical temperature (Tc):
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Dipole field from 2 conductors

densitycurrentuniform=J

J
B

Ampere’s law:

rJBJrBrdsB
2

2 02
0

μπμπ =→==⋅∫
r

θ

r

B
θμ sin

2
0 rJBx −=

θμ cos
2
0 rJBy =

IsdB 0μ=⋅∫
rr

current through
the circle

Pedro Castro |  Introduction to Accelerators  |  20th July 2011  |  Page 64

Dipole field from 2 conductors

densitycurrentuniform=J

J J
B Br
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Dipole field from 2 conductors

J
J

densitycurrentuniform=J

. 0=J
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Dipole field from 2 conductors

J
J2

0JrB μ
=

0=J

densitycurrentuniform=J

θμ sin
2
0 rJBx −=

θμ cos
2
0 rJBy =

1θ
1r

2θ
2r

)cos(cos 2211 θθ rrd −+=

2211 sinsin θθ rrh ==
0)sinsin(

2 2211
0 =+−= θθμ rrJBx

dJrrJBy 2
)coscos(

2
0

2211
0 μθθμ

=−=

.
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Dipole field from 2 conductors

J
J

constant vertical field

B.

beam
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From the principle to the reality…

Aluminium collar

.
B

15 mm x 2 mm
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LHC cables

1 cable houses 36 strands 1 strand = 0.825 mm diameter
houses 6300 filaments

1 filament = 6 µm

Copper is the insulation material
between two filaments

(around each filament: 0.5 µm Cu)

cross section
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Computed magnetic field

B

56 mm
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LHC dipole coils in 3D

p beam

p beam
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LHC dipole coils in 3D

B
p beam

p beam

I
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LHC dipole magnet (cross-section)

beam tubes

superconducting coils

nonmagnetic collars

ferromagnetic iron

steel container for He

insulation vacuum

supports

vacuum tank
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p

p

Superconducting  dipole magnets
LHC dipole magnet interconnection:
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Dipole antenna
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Radiation of a moving oscillating dipole

v

Lorentz-contraction

Radiation of an oscillating dipole

Radiation of a dipole antenna
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Lorentz-contraction

cv 5.0= cv 9.0=

dipole radiation: electron trajectory

electron
trajectory

electron
trajectory

15.1≅γ 3.2≅γ

Radiation of a oscillating dipole under relativistic conditions

DORIS:
PETRA: 12000=γ

8900=γ
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Synchrotron radiation

Power radiated by one electron in a dipole field:

2

4

0

2

6 r
qcP γ
επ

=
2

0cm
E

=γ

Dipole magnet

p
Bq

r
=

1

vacuum permitivity
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Synchrotron radiation

Total energy loss after one full turn:

B

]m[
106.032]GeV[

3

4
18

turn

4

0

2

turn r
E

r
qE γγ
ε

−×=Δ⇒=Δ
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Synchrotron radiation

Total energy loss after one full turn:

HERA electron ring: HERA proton ring:

%)(10eV10
980

GeV920
m580

9-≅Δ

=
=
=

turnE

E
r

γ

need acceleration = 87 MV per turn

same

(0.3%)MeV87
54000

GeV5.27
m580

=Δ
=
=
=

turnE

E
r

γ

]m[
106.032]GeV[

3

4
18

turn

4

0

2

turn r
E

r
qE γγ
ε

−×=Δ⇒=Δ
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%)(10eV10
980

GeV920
m580

9-≅Δ

=
=
=

turnE

E
r

γ

Synchrotron radiation

Total energy loss after one full turn:

HERA electron ring: HERA proton ring:

need acceleration = 87 MV per turn

the limit is the max. dipole field = 5.5 Tesla

p
qB

r
=

1

same

(0.3%)MeV87
54000

GeV5.27
m580

=Δ
=
=
=

turnE

E
r

γ

]m[
106.032]GeV[

3

4
18

turn

4

0

2

turn r
E

r
qE γγ
ε

−×=Δ⇒=Δ
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Synchrotron radiation

Total energy loss after one full turn:

HERA electron ring:

(0.3%)MeV87
54000

GeV5.27
m580

=Δ
=
=
=

turnE

E
r

γ

LEP collider:

need acceleration = 87 MV per turn

]m[
106.032]GeV[

3

4
18

turn

4

0

2

turn r
E

r
qE γγ
ε

−×=Δ⇒=Δ

(4%)eV4
205000

GeV105
m2800

GE

E
r

turn ≅Δ
=
=
=

γ

x5

need 4 GV per turn !!
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(4%)eV4
205000

GeV105
m2800

GE

E
r

turn ≅Δ
=
=
=

γ

Synchrotron radiation

Total energy loss after one full turn:

HERA electron ring: LEP collider:

need acceleration = 87 MV per turn

x5

need 4 GV per turn !!

(0.3%)MeV87
54000

GeV5.27
m580

=Δ
=
=
=

turnE

E
r

γ

]m[
106.032]GeV[

3

4
18

turn

4

0

2

turn r
E

r
qE γγ
ε

−×=Δ⇒=Δ
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Project for a future e-e+ collider: ILC

The International Linear Collider

e+ e-

15 km

Colliding beams with E = 500 GeV

more:  http://www.linearcollider.org/

e+e-LC lecture on Monday, by J. Timmermans
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Superconducting cavities for acceleration

• International Linear Collider (ILC)

• European X-ray Free-Electron Laser (XFEL)

• Free-electron LASer in Hamburg (FLASH)

(future project)

(in construction)

(in operation)

Pedro Castro |  Introduction to Accelerators  |  20th July 2011  |  Page 86

RF cavity basics: the pill box cavity

p

pill boxes
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RF cavity basics: the pill box cavity
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Pill box cavity: 3D visualisation of E and B

E B

beam
beam
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Superconducting cavity used in FLASH (0.3 km) and in XFEL (3 km)

beam

1 m

pill box called ‘cell’

RF input port
called ‘input coupler’

or ‘power coupler’

beam

Higher Order Modes port
(unwanted modes)

RF input port
called ‘input coupler’

Superconducting cavity used in FLASH and in XFEL
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Accelerating field map

beam

Higher Order Modes port
(unwanted modes)

Simulation of the fundamental mode: electric field lines

beam

E
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Advantages of RF superconductivity

resistance

critical temperature (Tc):

for DC currents !

at radio-frequencies, there is a “microwave surface resistance”

which typically is 5 orders of magnitude lower than R of copper
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2nd law of Thermodynamics

“Heat cannot spontaneously flow from a colder location to a hotter location”

CH

C
c TT

T
−

=η air conditioners,
refrigerators, …

max. efficiency
most common 
applications

H

CH
c T

TT −
=η

thermal power stations,
cars, …

Carnot efficiency:
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Advantages of RF superconductivity

Example:  comparison of 500 MHz cavities:

superconducting
cavity

normal conducting
cavity

for E = 1 MV/m 1.5   W / m 56   kW / m
at 2 K

for E = 1 MV/m 1   kW / m 56   kW / m

dissipated at
the cavity walls

for E = 1 MV/m 1   kW / m 112   kW / m including RF generation
efficiency (50%)

>100  (electrical) power reduction factor

Carnot efficiency: 007.0
300

=
−

=
T

T
cη x cryogenics

efficiency
20-30%
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Number of cavities 8
Cavity length 1.038 m
Operating frequency 1.3 GHz
Operating temperature 2 K
Accelerating Gradient 23..35 MV/m

beam

beam

12 m
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Cavities inside of a cryostat

beam

module installation in FLASH (2004)



19/07/2011

49

Pedro Castro |  Introduction to Accelerators  |  20th July 2011  |  Page 97

accelerator
control room

Free-electron LASer in Hamburg (FLASH)
~300 m
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European X-Ray Free Electron Laser (XFEL)
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First summing-up

Applications:
• HEP (example: LHC)
• light source (example: DORIS, Ribosome)
• medicine (example: PET)
• industry (example: electron beam welding)
• cathode ray tubes (example: TV)

Electrostatic accelerators:

• Cockcroft-Walton generator
• Tandem Van der Graaff accelerator

Radio-frequency accelerators:

• Widerøe drift-tube
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Second summing-up

• Alvarez drift-tube structure
Linear accelerators:

Circular accelerators:

• Cyclotron, E. Lawrence

• Synchrotron

Dipole magnets:

normal conducting dipoles

superconducting dipoles
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Third summing-up

Circular colliders (synchrotrons with R=const.):

• proton synchrotrons              dipole magnet

• electron synchrotrons         synchrotron radiation 

limitation

Linear accelerators:

• International Linear Collider (ILC)

• European X-ray Free-Electron Laser (XFEL)

• Free-electron LASer in Hamburg (FLASH)

based on
S.C. cavities
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pedro.castro@desy.de

Thank you for your attention


