

Applications of Accelerators (3)				
Medical applications				
For radioisotope production proton beam + stable isotope				
 For radiotherapy and radiosurgery: x-rays and gamma-rays ions (from protons to atoms with atomic number up to 18, Argon) neutrons 				
Pedro Castro Introduction to Accelerators 20 ^m July 2011 Page 11				

Applications of Accelerators (4)							
For ii	ndustrial applications:						
Ap	oplication						
Io	n implantation	~ 9500					
Ele	ectron cutting and welding	~ 4500					
Ele	ectron beam and x-ray irradiators	~ 2000					
Io	n beam analysis (including AMS)	~ 200					
Ra	adioisotope production (including PET)	~ 900					
No	ondestructive testing (including security)	~ 650					
Ne	eutron generators (including sealed tubes)	~ 1000					
approx. numbers from 2007 (worldwide) with energies up to 15 MeV $\ensuremath{}$							
Pedro Castro Introduction to Accelerators 20th July 2011 Page 15							

Cyclotron				
in a uniform constant magnetic field:				
$T = 2\pi \frac{m}{q B} = const.$ (for non-relativistic velocities)				
cyclotron frequency: $\omega = \frac{2\pi}{T} = \frac{q}{m}B = const.$				
\rightarrow protons up to 15 MeV (β = 0.1)				
Pedro Castro Introduction to Accelerators 20 ^m July 2011 Page 44				

Advantages of RF superconductivity					
Example: comparison of 500 MHz cavities:					
	superconducting cavity	normal conducting cavity			
for E = 1 MV/m	1.5 W/m at 2 K	56 kW/m	dissipated at the cavity walls		
Carnot efficiency: $\eta_c = \frac{T}{300 - T} = 0.007$ x cryogenics 20-30% efficiency					
for E = 1 MV/m	1 kW / m	56 kW/m			
for E = 1 MV/m	1 kW / m	112 kW/m	including RF generation efficiency (50%)		
>100 (electrical) power reduction factor					
Pedro Castro Introduction to Accelerators 20th July 2011 Page 94					

<section-header><section-header><section-header><section-header><list-item><list-item><section-header><section-header><section-header>

