Free-Electron Laser

A) Motivation and Introduction

B) Theoretical Approach

C) Experimental Realization / Challenges

Free-Electron Laser

appendix for "experts"

Theoretical Approach: FEL
1 Introduction
2 Effects (decoupled considerations)
2.1 Particle Motion – Trajectory in Undulator
2.2 Continuous Source Distribution
2.3 Electromagnetic Fields
2.4 Particle Motion - Energy
3 Coupled Equations
3.1 Numerical Solution
3.2 Effects (now coupled)
3.3 Analytic Solution (Vlasov etc.)

A) Motivation and Introduction

Need for Short Wavelengths Why FELs? Free Electron \leftrightarrow Wave Interaction Micro-Bunching **Amplifier and Oscillator** Self Amplifying Spontaneous Emission (SASE) Why SASE? **Coherent Radiation**

Need for Short Wavelengths

LYSOZYME MW=19,806

state of the art: structure of biological macromolecule

reconstructed from diffraction pattern of protein crystal:

needs $\approx 10^{15}$ samples crystallized \rightarrow not in life environment the crystal lattice imposes

restrictions on molecular motion

images courtesy Janos Hajdu, slide from Jörg Rossbach

Need for Short Wavelengths - 2

resolution does not depend on sample quality needs very high radiation power @ $\lambda \approx 1$ Å can see dynamics if pulse length < 100 fs

we need a radiation source with • very high peak and average power

- wavelengths down to atomic scale $\lambda \sim 1$ Å
- spatially coherent
- monochromatic
- fast tunability in wavelength & timing
- sub-picosecond pulse length

courtesy Janos Hajdu

SINGLE

Why FELs?

principle of a quantum laser

problem & solution: active medium \rightarrow free electron – EM wave interaction

Free Electron \rightarrow Wave Interaction

• electrons \rightarrow wave

Maxwell theory ...

$$\frac{d}{dz}\hat{E} = -\frac{\mu c}{2}\hat{J}$$

z = position in undulator

amplitude of bunched current amplitude of EM wave

 $\bullet \text{ wave} \rightarrow \text{electron}$

equation of motion

change of kinetic energy of particle

$$\frac{dW}{dt} = -e\mathbf{v}(t) \cdot \mathbf{E}(\mathbf{r}(t), t)$$

change of averaged longitudinal velocity

• change of longitudinal micro structure "micro bunching"

Micro-Bunching

- longitudinal motion to 1st order is trivial, **but**
- micro-bunching is a 2nd order effect
 - → coupled theory of particle motion and wave generation
- transverse bunch structure is much larger than longitudinal sub-structure
 → 1d theory with plane waves

Amplifier and Oscillator

instability, driven by noise, growth until amplifier saturates

• amplified noise:

Self Amplifying Spontaneous Emission (SASE)

- uniform random distribution of particles at entrance
- incoherent emission of EM waves (noise, wide bandwidth)
- amplification (\rightarrow resonant wavelength, micro-bunching)
- saturation, full micro modulation, coherent radiation

Why SASE?

oscillator needs resonator

but there are no mirrors for wavelengths < 100 nm

• alternative: seed laser + harmonic generation + amplifier

Coherent Radiation

electron in undulator \rightarrow plane wave in far field

incoherent superposition of plane waves:

coherent superposition of plane waves:

 $\varphi_2 \quad \varphi_3$

 φ_1

field amplitude:
$$E_{\Sigma} = \left| \sum_{\nu=1}^{N} \exp(i\varphi_{\nu}) \right| \approx N$$

radiated power: $P_{\Sigma} \propto E_{\Sigma}^{2} \approx N^{2}$

Coherent Radiation - 2

B) Theoretical Approach

Wave \rightarrow Free Electron interaction

Resonance Condition

Particle Energy and Ponderomotive Phase

Longitudinal Equation of Motion

Low Gain Theory

FEL Gain

Micro-Bunching

High Gain Theory

Continuous Phase Space

Gain Length

Wave \rightarrow Free Electron Interaction

undulator trajectory

Free Electron ← Wave Interaction - 2

Free Electron \leftarrow Wave Interaction - 3

averaged versus one undulator period:

$$\frac{dW}{dt} \sim \frac{1}{2}\cos\psi$$

systematic gain or loss of particle energy

Resonance Condition

- systematic gain or loss of particle energy if $k_{\mu}\overline{\nu} = k_{l}(c - \overline{\nu})$
- \bullet equation of motion in undulator (without wave) \rightarrow

$$x(z) \approx \frac{K_p}{k_u \gamma} \sin k_u z \qquad z(t) \approx \overline{v}t \qquad \text{with} \quad K_p = \frac{q_0 |B_0|}{m_0 k_u c} \quad \text{undulator parameter (~ 1)}$$

$$and \quad \frac{\overline{v}}{c} \approx 1 - \frac{1}{2\gamma^2} \left(1 + \frac{K_p^2}{2} \right) \qquad \gamma \text{ =Lorentz factor} \quad (\sim \text{ energy})$$

resonance condition

$$\lambda_{l} = \left(c - \overline{v}\right) \frac{\lambda_{u}}{c} \approx \frac{\lambda_{u}}{2\gamma^{2}} \left(1 + \frac{K_{p}^{2}}{2}\right)$$

Particle Energy and Ponderomotive Phase

• resonance condition \rightarrow resonant energy

$$\lambda_{l} = \frac{\lambda_{u}}{2\overline{\gamma_{\text{res}}^{2}}} \left(1 + \frac{K_{p}^{2}}{2}\right)$$

- if resonance condition fulfilled: $\left\langle \frac{dW}{dt} \right\rangle \propto -\hat{E} \cos \psi$ with ψ = const ponderomotive phase
 - $\psi = 0 \rightarrow$ kinetic energy transfer EM \rightarrow wave "laser" $\psi = \pi \rightarrow$ transfer EM wave \rightarrow kinetic energy "accelerator"
- if resonance condition is not fullfilled: $\gamma \neq \gamma_{res}$

particle slips in one period by
$$\lambda_l - \zeta = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K_p^2}{2} \right)$$

change of ponderomotive phase $\Delta \psi = k_l \zeta$

Longitudinal Equation of Motion (in average)

longitudinal phase space

$$\frac{d\psi}{dt} \propto \gamma - \gamma_{\rm res} \qquad \qquad \frac{d\gamma}{dt} \propto -\hat{E}\cos\psi$$

longitudinal position $\rightarrow \psi$ energy $\rightarrow \gamma$

equations are analog to mathematical pendulum

Low Gain Theory

• neglect change of field amplitude

$$\frac{d\psi}{dt} \propto \gamma - \gamma_{\rm res} \qquad \qquad \frac{d\gamma}{dt} \propto -\hat{E}\cos\psi$$

• indirect gain calculation

$$G = \frac{\text{gain of field energy}}{\text{initial field energy}} = \frac{\text{loss of particle energy}}{\text{initial field energy}} = \frac{W_{\Sigma}(\text{in}) - W_{\Sigma}(\text{out})}{\text{initial field energy}}$$

FEL Gain

 \bullet analytical analysis \rightarrow

Micro-Bunching

Fourier analysis of longitudinal particles positions
 → amplitude of micro modulation

$$\hat{I} \propto \sum \exp(-i\psi_{\nu})$$

(fundamental mode)

High Gain Theory

- logitudinal position in undulator $z = \overline{v}t \approx ct$
- set of equations:

particles
$$\frac{d\psi}{dz} \propto \gamma - \gamma_{res} \qquad \frac{d\gamma}{dz} \propto -\operatorname{Re}\left\{\hat{E}(z)\exp(i\psi)\right\}$$
amplitude (and phase) of EM wave
bunching
$$\hat{I} \propto \sum \exp(-i\psi_{\nu})$$
amplitude
$$\frac{d}{dz}\hat{E} \propto \hat{I}$$
(from Maxwell equations)

this set of equations + field equations can be solved numerically

• FEL codes include transverse motion and 3D EM field calculation

Continuous Phase Space

• phase space distribution many point particles $\psi_n, \gamma_n \rightarrow \text{continuous density distribution } F(z, \psi, \eta)$

charge density $\lambda(z,\psi) = \int d\eta \times F(z,\psi,\eta)$ bunching $\hat{I} \propto \int d\psi \times \lambda(z,\psi) e^{-i\psi}$

• Vlasov equation

$$\frac{dF}{dz} = \frac{\partial F}{\partial z} + \frac{\partial F}{\partial \psi} \frac{d\psi}{dz} + \frac{\partial F}{\partial \eta} \frac{d\eta}{dz} = 0$$

$$\frac{d\psi}{dz} \propto \gamma - \gamma_{\text{res}} \qquad \frac{d\eta}{dz} \propto -\text{Re}\left\{\hat{E}(z)\exp(i\psi)\right\}$$

Gain Length

C) Experimental Realization / Challenges

Linac Coherent Light Source - LCLS

Scales

Challenges

RF Gun

Bunch Compression

European X-FEL

Table Top FEL

Linac Coherent Light Source- LCLS

SLAC mid-April 2009 – first lasing at 1.5 Å

Scales

photon wavelength	$\lambda_l \propto 10^{-10} \mathrm{m} \propto \lambda_u / \gamma^2$	2
cooperation length	$L_l \propto 10^{-8} \mathrm{m}$	
transverse oscillation	$\hat{x} \propto 10^{-6} \mathrm{m}$	(undulator trajectory)
bunch length	$L_b \propto 10^{-5} \mathrm{m}$	
bunch width	$\sigma_w^{\mathrm{bunch}} \propto 10^{-5} \mathrm{m}$	width of photon beam $\sigma_w^{\rm wave} \propto \sqrt{\lambda_l L_R}$
undulator period	$\lambda_{\mu} \propto 10^{-2} \mathrm{m}$	
power gain length	$L_g \approx 110 \mathrm{m}$	
Rayleigh length	L_R	(scale of widening of photon beam)
saturation length	$L_s \approx 10 L_g \dots 20 L_g < L_u$	
undulator length	$L_{\mu} \propto 100 \mathrm{m}$	
length with linac	$L \propto 10^3 \mathrm{m}$	

Scales

photon wavelength	$\lambda_l \propto 10^{-10} \mathrm{m} \propto \lambda$	$_{\prime u}/\gamma^2$	
cooperation length	$L_l \propto 10^{-8} \mathrm{m}$		
transverse oscillation	$\hat{x} \propto 10^{-6} \mathrm{m}$	(undulator trajectory)	
bunch length	$L_b \propto 10^{-5} \mathrm{m}$		
bunch width	$\sigma_w^{\text{bunch}} \propto 10^{-5} \mathrm{m}$	width of photon beam $\sigma_w^ imes$	ave of $\sqrt{\lambda_l L_R}$
undulator period	$\lambda_u \propto 10^{-2} \mathrm{m}$	overlap of particle beam	
power gain length	$L_g \approx 110 \mathrm{m}$	with photon beam	
Rayleigh length	L_R	(scale of widening of phot	ton beam)
saturation length	$L_s \approx 10 L_g 20 L_g <$	$< L_u$	
undulator length	$L_u \propto 100 \mathrm{m}$		
total length	$L \propto 10^3 \mathrm{m}$		6

Challenges

$$\lambda_l = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

$$L_g = \frac{1}{\sqrt{3}} \left(\frac{4mc}{\mu e} \frac{\gamma^3 \lambda_u}{K^2} \frac{\sigma_r^2}{I} \right)^{1/3}$$

- $\lambda_l \rightarrow Å$
- Energy \rightarrow 10 .. 20 GeV
- gain length $L_g <\sim 10 \text{ m}$
- high peak current >~ kA
- transverse beam size $\sigma_r \propto 10 \ \mu m$
- energy spread
- overlap electron-photon beam

(undulator parameter $K \propto 1$)

 $\sigma_r^2 \propto \lambda_l L_g$

transverse: generate low emittance beam preservation of emittance longitudinal: compression acceleration diagnostic and steering undulator alignment $\frac{\sigma_r^2}{I} = \frac{\sigma_r^2 L_b}{Q^c}$ volume $\frac{\sigma_r^2}{Q^c}$ bunch charge

space charge forces:

$$E_{sq} \propto \frac{1}{\gamma^2} \frac{q}{\sigma_r^2}$$

RF Gun

typical parameters of FLASH & European XFEL:

$$q \propto 1 \,\mathrm{nC}$$
 $E \propto 5 \,\mathrm{MeV}$ $I \propto 50 \,\mathrm{A}$
 $\gamma \propto 10$

longitudinal compression $1 \rightarrow 0.01$ needed !

Magnetic Bunch Compression

 $\gamma >>1 \rightarrow$ velocity differences are too small for effective compression magnetic compression: path length depends on energy

beam dynamics with space charge and CSR effects

Magnetic Bunch Compression - 2

European XFEL

webcams (Aug 2009)

June 2010: start of tunnel construction

webcams (Jul 2010)

European X-FEL - 2

superconducting cavity, 1.3 GHz $E_{\rm acc} \rightarrow$ 40 MeV/m 22.5 MeV/m are needed

FLASH tunnel: cryo module

European X-FEL - 3

	LCLS	SCSS	European XFEL	
Abbreviation for	Linac Coherent Light Source	Spring-8 Compact SASE Source	European X-Ray Free- Electron Laser	
Location	California, USA	Japan	Germany	
Start of commissioning	2009	2010	2014	
Accelerator technology	normal conducting	normal conducting	superconducting	
Number of light flashes per second	120	60	30 000 multi bunch	opera
Minimum wavelength of the laser light	0.15 nanometres	0.1 nanometres	0.1 nanometres	
Maximum electron energy	14.3 billion electron volts (14.3 GeV)	6-8 billion electron volts (6-8 GeV)	17.5 billion electron volts (17.5 GeV)	
Length of the facility	3 Kilometer	750 Meter	3.4 Kilometer	
Number of undulators (magnet structures for light generation)	1	3	5	
Number of experiment stations	3-5	4	10	
Peak brilliance [photons / s / mm ² / mrad ² / 0.1% bandwidth]	8.5·10 ³²	5·10 ³³	5·10 ³³	

beamlines

Table Top FEL

Laser-Pasma accelerators: "bubble acceleration"

Appendix

Theoretical Approach: FEL

1 Introduction

2 Effects (decoupled considerations)

2.1 Particle Motion – Trajectory in Undulator

2.2 Continuous Source Distribution

2.3 Electromagnetic Fields

2.4 Particle Motion - Energy

3 Coupled Equations

3.1 Numerical Solution

3.2 Effects (now coupled)

3.3 Analytic Solution (Vlasov etc.)

2.1 Particle Motion – Trajectory in Undulator

2.1 Particle Motion – Trajectory in Helical Undulator

field of helical undulator:

$$\mathbf{B}_{u} = B_{0} \left(\mathbf{e}_{x} \cos k_{u} z \mp \mathbf{e}_{y} \sin k_{u} z \right)$$

simplification: we neglect dependency on transverse offset

in equation of motion

$$\gamma_{\nu}m_{0}\ddot{\mathbf{r}}_{\nu}=-q_{0}\dot{\mathbf{r}}_{\nu}\times\mathbf{B}_{u}$$

solution
$$\mathbf{r}_{v} = \frac{K_{h}}{k_{u}\gamma_{v}} \left(\mathbf{e}_{x} \sin k_{u}z_{v} \pm \mathbf{e}_{y} \cos k_{u}z_{v} \right) + \mathbf{e}_{z}z_{v}$$
$$\dot{\mathbf{r}}_{v} = \frac{K_{h}}{\gamma_{v}} \left(\mathbf{e}_{x} \cos k_{u}z_{v} \mp \mathbf{e}_{y} \sin k_{u}z_{v} \right) \overline{v}_{v} + \mathbf{e}_{z}\overline{v}_{v}$$
$$\ddot{\mathbf{r}}_{v} = -\frac{K_{h}}{\gamma_{v}} k_{u} \left(\mathbf{e}_{x} \sin k_{u}z_{v} \pm \mathbf{e}_{y} \cos k_{u}z_{v} \right) \overline{v}_{v}^{2}$$

not the general solution!

with helical undulator parameter (~1, dimensionless)

$$K_h = \frac{q_0 |B_0|}{m_0 k_u c}$$

2.1 Particle Motion – Trajectory in Helical Undulator

1

nominal particle (and energy)

$$\mathbf{r} = \frac{K_h}{k_u \gamma} \left(\mathbf{e}_x \sin k_u z \pm \mathbf{e}_y \cos k_u z \right) + \mathbf{e}_z z$$
$$\dot{\mathbf{r}} = \frac{K_h}{\gamma_v} \left(\mathbf{e}_x \cos k_u z \mp \mathbf{e}_y \sin k_u z \right) \overline{v} + \mathbf{e}_z \overline{v}$$

averaged longitudinal velocity

2.1 Particle Motion – Trajectory in Helical Undulator

ponderomotive phase

 $\psi_v = k_m (z_v - \overline{v}t)$ describes particle position with respect to nominal particle and micro modulation

$$\frac{d\psi_{\nu}}{dt} = k_m \left(\overline{\nu}_{\nu} - \overline{\nu}\right)$$
$$\frac{\overline{\nu}_{\nu}}{c} \approx 1 - \frac{1}{2\gamma_{\nu}^2} \left(1 + K_h^2\right)$$
$$\frac{\overline{\nu}}{c} \approx 1 - \frac{1}{2\gamma^2} \left(1 + K_h^2\right)$$

$$\frac{d\psi_{v}}{dt} \approx 2\overline{v}k_{u}\frac{\mathcal{E}_{v}-\mathcal{E}}{\mathcal{E}}$$

1D approach: neglect transverse dimensions (very large transverse dimension)

simplification: uniform in cross section A

charge density:

$$\rho(z,t) \leftarrow -q_0 \sum \delta(\mathbf{r} - \mathbf{r}_{\nu}(t))$$

current density:

$$\mathbf{J}(z,t) \leftarrow -q_0 \sum \dot{\mathbf{r}}_v \delta(\mathbf{r} - \mathbf{r}_v(t))$$
$$\mathbf{J}(z,t) \approx \leftarrow -q_0 \dot{\mathbf{r}} \sum \delta(\mathbf{r} - \mathbf{r}_v(t)) \quad \text{with} \quad \dot{\mathbf{r}} = \frac{K_h}{\gamma} \left(\mathbf{e}_x \cos k_u z \mp \mathbf{e}_y \sin k_u z \right) \overline{v} + \mathbf{e}_z \overline{v}$$

in particular:

$$J_{x}(z,t) = -q_{0}\overline{v}\frac{K_{h}}{\gamma A}\sum \delta(z-z_{v}(t))\cos k_{u}z$$

averaged transverse current (as "seen from the wave"): vs. one undulator period

$$J_{xa}(z,t) = \frac{1}{T_u} \int_{-T_u/2}^{T_u/2} \int_{-T_u/2}^{T_u/2} (z - c\tau, t - \tau) d\tau$$

$$J_{xa}(z,t) = -q_0 \overline{v} \frac{K_h}{\gamma A} \frac{1}{T_u} \int_{-T_u/2}^{T_u/2} \sum \delta(z - c\tau - z_v(t - \tau)) \cos k_u (z - c\tau) d\tau$$

$$\approx z_v(t) - \overline{v} \tau$$

$$= 0 \rightarrow \tau_v$$

$$\{v\} = \left\{\frac{-T_u}{2} < \tau_v \le \frac{T_u}{2}\right\}$$

$$J_{xa}(z,t) = -q_0 \overline{\nu} \frac{K_h}{\gamma A} \frac{1}{c - \overline{\nu}} \frac{1}{T_u} \sum_{\{\nu\}} \cos k_u \left(-\overline{\nu} \frac{z - ct}{c - \overline{\nu}} + c \frac{z_\nu(t) - \overline{\nu}t}{c - \overline{\nu}} \right)$$

$$J_{xa}(z,t) = -q_0 \overline{v} \frac{K_h}{\gamma} \frac{1}{\lambda_p} \sum_{\{v\}} \cos(k_m (z_v(t) - \overline{v}t) - k_p (z - ct))$$

$$z - \overline{v}t - \frac{\lambda_p}{2} < z_v(t) - \overline{v}t \le z - \overline{v}t + \frac{\lambda_p}{2}$$

$$v \in \text{period}$$

$$J_{xa}(z,t) = \operatorname{Re}\left\{\hat{J}_{a}(z,z-\overline{v}t)\cdot\exp(jk_{p}(z-ct))\right\}$$
$$\hat{J}_{a}(z,z-\overline{v}t) = -q_{0}\overline{v}\frac{K_{h}}{\gamma A}\frac{1}{\lambda_{p}}\sum_{\{v\}}\exp(-j\psi_{v})$$

 $J_{ya}(z,t) = \mp \operatorname{Im}\{\cdots\}$ y component is similar

with $\psi_{v} = k_{m}(z_{v}(t) - \overline{v}t)$ ponderomotive particle phase (changes slowly along many undulator periods)

Maxwell
$$\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B}$$

 $\nabla \times \mathbf{B} = \mu \mathbf{J} + \frac{1}{c^2} \frac{\partial}{\partial t} \mathbf{E}$
 $\nabla \times \nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mu \mathbf{J} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{E}$
 $\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{E} = \frac{\partial}{\partial t} \mu \mathbf{J} + \nabla (\nabla \mathbf{E})$ $\nabla \mathbf{E} = \frac{\rho}{\varepsilon}$
 $\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \mathbf{E} = \frac{\partial}{\partial t} \mu \mathbf{J} + \frac{1}{\varepsilon} \nabla \rho$

inhomogeneous 1D wave equation for transverse components:

$$\left(\frac{\partial^2}{\partial z^2} - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)E_x = \mu \frac{\partial J_x}{\partial t}$$

solution of 1D wave equation:

 $E_{x}(z,t) = E_{x}^{f}(z,t) + E_{x}^{b}(z,t)$ with $\left(\frac{\partial}{\partial z} + \frac{1}{c}\frac{\partial}{\partial t}\right)E_x^f = -\frac{\mu c}{2}J_x$ forward wave $\left(\frac{\partial}{\partial z} - \frac{1}{c}\frac{\partial}{\partial t}\right)E_x^b = \frac{\mu c}{2}J_x$ backward wave $\left(\frac{\partial^2}{\partial z^2} - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)\left(E_x^f + E_x^b\right) = -\left(\frac{\partial}{\partial z} - \frac{1}{c}\frac{\partial}{\partial t}\right)\frac{\mu c}{2}J_x + \left(\frac{\partial}{\partial z} + \frac{1}{c}\frac{\partial}{\partial t}\right)\frac{\mu c}{2}J_x$ $=\mu \frac{\partial J_x}{\partial t}$ solution: $E_x^{f/b}(z,t) = -\frac{1}{2c} \int_{0}^{\infty} J_x(z \mp c\tau, t - \tau) d\tau$

we neglect backward solution $E_x(z,t) \approx E_x^f(z,t)$ and use $\int_0^\infty J_x(\cdots)d\tau \approx \int_0^\infty J_{xa}(\cdots)d\tau$

$$E_{x}(z,t) = -\frac{1}{2\varepsilon} \int_{0}^{\infty} J_{xa}(z-c\tau,t-\tau)d\tau$$

$$E_{y}(z,t) = \mp \operatorname{Im}\{\cdots\}$$

y component is similar

with bunch coordinate:

$$\left(\frac{\partial}{\partial z} + \left(1 - \frac{\overline{v}}{c}\right)\frac{\partial}{\partial s}\right)\hat{E}_a = -\frac{\mu c}{2}\hat{J}_a$$

electromagnetic field:

$$\mathbf{E}(z,t) = \operatorname{Re}\left\{\left(\mathbf{e}_{x} \pm j\mathbf{e}_{z}\right)\hat{E}_{a}(z,z-\overline{v}t)\cdot\exp\left(jk_{p}(z-ct)\right)\right\} + \mathbf{e}_{z}\overline{E_{z}(z,t)}$$

calculation of *z* component is straight forward

this is essentially a circular polarized EM wave:

$$\mathbf{E}_{p}(\mathbf{r},t) = E_{0}\left(\mathbf{e}_{x}\cos\{k_{p}(z-tc)+\psi_{0}\}\mp\mathbf{e}_{y}\sin\{k_{p}(z-tc)+\varphi_{0}\}\right)$$
$$-\frac{d}{dt}\mathbf{B}_{p} = \operatorname{curl}\mathbf{E}_{p} \rightarrow \mathbf{B}_{p}(\mathbf{r},t) = \frac{E_{0}}{c}\left(\pm\mathbf{e}_{x}\sin\{k_{p}(z-tc)+\psi_{0}\}+\mathbf{e}_{y}\cos\{k_{p}(z-tc)+\varphi_{0}\}\right)$$

2.4 Particle Motion - Energy

change of particle energy

$$\frac{d}{dt}\mathcal{E}_{v} = -q_{0}\dot{\mathbf{r}}_{v} \cdot \mathbf{E}(\mathbf{r}_{v},t)$$

simplified (with circular polarized wave):

$$\mathbf{E}_{p}(\mathbf{r},t) = E_{0}\left(\mathbf{e}_{x}\cos\left\{k_{p}(z-tc)+\psi_{0}\right\}\mp\mathbf{e}_{y}\sin\left\{k_{p}(z-tc)+\varphi_{0}\right\}\right)$$
$$\dot{\mathbf{r}}_{v} = \frac{K_{h}}{\gamma_{v}}\left(\mathbf{e}_{x}\cos k_{u}z_{v}\mp\mathbf{e}_{y}\sin k_{u}z_{v}\right)\overline{v}_{v} + \mathbf{e}_{z}\overline{v}_{v}$$

$$\frac{d}{dt}\mathcal{E}_{v} = -q_{0}\frac{K_{h}}{\gamma_{v}}\overline{v}_{v}E_{0}\left(\mathbf{e}_{x}\cos k_{u}z_{v}\mp\mathbf{e}_{y}\sin k_{u}z_{v}\right)\cdot\left(\mathbf{e}_{x}\cos\left\{\cdots\right\}\mp\mathbf{e}_{y}\sin\left\{\cdots\right\}\right)$$

$$= -q_0 \frac{K_h}{\gamma_v} \overline{v}_v E_0 \left(\cos k_u z_v \cos\{\cdots\} + \sin k_u z_v \sin\{\cdots\} \right)$$
$$= -q_0 \frac{K_h}{\gamma_v} \overline{v}_v E_0 \cos\left[k_p \left(z_v - tc\right) + \psi_0 - k_u z_v\right]$$

2.4 Particle Motion - Energy

change of particle energy

$$\frac{d}{dt}\mathcal{E}_{v} = -q_{0}\dot{\mathbf{r}}_{v} \cdot \mathbf{E}(\mathbf{r}_{v},t)$$

simplified (with circular polarized wave):

$$\frac{d}{dt} \mathcal{E}_{v} = -q_{0} \frac{K_{h}}{\gamma_{v}} \overline{v}_{v} E_{0} \cos\left[k_{p}(z_{v} - tc) + \varphi_{0} - k_{u}z_{v}\right]$$

$$\frac{d}{dt} \mathcal{E}_{v} = -q_{0} \frac{K_{h}}{\gamma_{v}} \overline{v}_{v} E_{0} \cos\left[(k_{p} - k_{u})z_{v} - k_{p}ct + \varphi_{0}\right]$$

$$\underbrace{k_{m}}_{k_{m}} \underbrace{k_{m}\overline{v}}_{k_{m}} \overline{v}_{v}$$
ponderomotive phase

$$\frac{d}{dt}\mathcal{E}_{v} = -q_{0}\frac{K_{h}}{\gamma_{v}}\overline{v}_{v}E_{0}\cos[\psi_{v}+\varphi]$$

$$\frac{d}{dt}\mathcal{E}_{v} \approx -q_{0}\frac{K_{h}}{\gamma}\overline{v}E_{0}\cos[\psi_{v}+\varphi]$$

2.4 Particle Motion - Energy

change of particle energy

$$\frac{d}{dt}\mathcal{E}_{v} = -q_{0}\dot{\mathbf{r}}_{v} \cdot \mathbf{E}(\mathbf{r}_{v},t)$$

without simplification:

electric field $\mathbf{E}(z,t) = \operatorname{Re}\left\{ (\mathbf{e}_{x} \pm j\mathbf{e}_{z}) \hat{E}_{a}(\cdots) \cdot \exp(jk_{p}(z-ct)) \right\} + \mathbf{e}_{z}E_{z}(z,t)$

$$\frac{d}{dt}\mathcal{E}_{\nu} = -q_0 \frac{K_h}{\gamma_{\nu}} \overline{v}_{\nu} \operatorname{Re}\left\{\hat{E}_a(z_{\nu}, z_{\nu} - \overline{\nu}t) \cdot \exp(j\psi_{\nu})\right\} - q_0 \overline{\nu} E_z(z_{\nu}, t)$$

z component contributes to FEL equation for simplicity suppress this term in the following

$$\frac{d}{dt}\mathcal{E}_{v} \approx -q_{0}\frac{K_{h}}{\gamma}\overline{v}E\cos[\psi_{v}+\varphi] \quad \text{with} \quad E\exp(j\varphi) = \hat{E}_{a}(z_{v}, z_{v}-\overline{v}t)$$

3 Coupled Equations

particle equations (longitudinal phase space):

$$\frac{d\psi_{v}}{dt} \approx 2k_{u}\overline{v}\frac{\mathcal{E}_{v}-\mathcal{E}}{\mathcal{E}}$$
$$\frac{d}{dt}\mathcal{E}_{v} \approx -q_{0}\overline{v}\frac{K_{h}}{\gamma}\operatorname{Re}\left\{\hat{E}_{a}(z,z_{v}-\overline{v}t)\cdot\exp(j\psi_{v})\right\}$$

change variables:

$$\frac{\mathcal{E}_{\nu}(t) - \mathcal{E}}{\mathcal{E}} \to \eta_{\nu} (z = t\overline{\nu})$$
$$\psi_{\nu}(t) \to \psi_{\nu} (z = t\overline{\nu})$$

neglect bunch coordinate:

$$\hat{E}_{a}(z, z_{v} - \overline{v}t) \approx \hat{E}_{a}(z)$$
$$\hat{J}_{a}(z, z_{v} - \overline{v}t) \approx \hat{J}_{a}(z)$$
(periodic model)

field equations:

$$\hat{J}_{a}(z, z - \overline{v}t) = -q_{0}\overline{v}\frac{K_{h}}{\gamma A}\frac{1}{\lambda_{p}}\sum_{\{v\}}\exp(-j\psi_{v})$$
$$\left(\frac{\partial}{\partial z} + \left(1 - \frac{\overline{v}}{c}\right)\frac{\partial}{\partial s}\hat{J}\hat{E}_{a} = -\frac{\mu c}{2}\hat{J}_{a}$$

3 Coupled Equations

periodic model particle equations (longitudinal phase space):

$$\frac{d\psi_{\nu}}{dz} = 2k_{u}\eta_{\nu}$$
$$\frac{d}{dz}\eta_{\nu} = -\frac{q_{0}}{\mathcal{E}}\frac{K_{h}}{\gamma}\operatorname{Re}\left\{\hat{E}_{a}\cdot\exp(j\psi_{\nu})\right\}$$

field equations:

$$\hat{J}_{a} = -q_{0}\overline{\nu}\frac{K_{h}}{\gamma A}\frac{1}{\lambda_{p}}\sum_{\{\nu\}}\exp(-j\psi_{\nu})$$

$$\frac{d}{dz}\hat{E}_a = -\frac{\mu c}{2}\hat{J}_a$$

3 Coupled Equations

