Research with Synchrotron Radiation.

Part II - Experimental Techniques

Jens Viefhaus

HASYLAB at DESY DESY Summer Student Common Lectures. July 30, 2009

Interaction of Synchrotron Radiation with Matter

Synchrotron Radation enables the use of various experimental techniques

- > Imaging analyzes the scattered particles (e, γ) in real space
- > Diffraction analyzes the scattered particles (e,γ) in reciprocal space
- > Spectroscopy analyzes the energy of the emitted/transmitted particles (e,i,γ)

Imaging - Van Gogh

Vincent van Gogh Patch of Grass Paris, 1887

Kröller-Müller Museum Otterio, the Netherlands

Imaging - Van Gogh

Vincent van Gogh Patch of Grass Paris, 1887

Kröller-Müller Museum Otterlo, the Netherlands

X-ray radiography Portrait of a Woman? Nuenen, 1884/1885?

X-ray radiograph

- reveals hidden face
- difficult to identify

Imaging with X-ray Fluorescence

- > X-ray Fluorescence Spectrometry (XRF):
 - X-ray emission excited by X-rays is called "fluorescence"
 - Characteristic energy of fluorescence for each element
 - Intensity of fluorescence is proportional to the number of excited atoms
 - suitable for quantitative analysis

www.spring8.or.jp/ENGLISH/general_info/ overview/pri_fl_x.jp

Imaging - The X-ray Fluorescence Setup

> The experiment at DORIS:

- scanning the picture with a micro beam
- detection of the emitted fluorescence photons

Imaging - Van Gogh at Beamline L of DORIS

fluorescence detector

ers еL,

Jens Viefhaus | DESY Summer Student Common Lectures

Imaging - Van Gogh at Beamline L of DORIS

fluorescence detector ers еL,

Jens Viefhaus | DESY Summer Student Common Lectures,

Imaging - Van Gogh Pixel by Pixel

- Painting is scanned with 0.5 mm resolution
 - For each of the 90,000 pixels a full spectrum is recorded:

Imaging - Van Gogh

Imaging - Van Gogh (Zn K-shell Fluorescence)

Imaging - Van Gogh (Ba K-shell Fluorescence)

Imaging - Van Gogh (Pb L-shell Fluorescence)

Imaging - Van Gogh (Sb K-shell and Hg L-shell Fluorescence)

X-ray Absorption Near Edge Structure - Paint Fingerprint

In order to identify the actual colour used by Vincent van Gogh, additional XANES scans were taken:

Van Gogh - Micro X-ray Fluorescence

To verify the fact that Sb and Hg are predominantly at the 2nd layer additonal µ-XRF scans were performed:

Visualizing a Lost Painting by Vincent van Gogh

> In conclusion, the analytical techniques above nicely complement each other.

• Anal. Chem., 80, 16, 6436 - 6442, 2008

Metal Contaminations in Small Water Fleas

- µ-XRF can determine the concentration of trace-level distributions within a water flea Daphnia magna
 - combining 2D/3D fluorescence with micro-probe and X-ray absorption tomography allows to create a detailed map of metal concentrations.
 - This enables scientifically based environmental regulations

• J. Anal. At. Spectrom, 23, 829-839 (2008) , Anal Bioanal Chem, 390, 267-271 (2008)

Jens Viefhaus | DESY Summer Student Common Lectures, DESY Hamburg | July 30, 2009 | page 17

Micro-Tomography at DORIS III

- > Principle: Measurement of many different projections
 - Numerical reconstruction of a 3-dimensional data set "absorption per voxel"

Micro-Tomography of Complex Samples

FORSCH

Courtesy: J. Herzen, F. Beckmann (GKSS)

Characterization of AI-alloy T-joints

- In aircraft construction so-called stingers are currently used as pore-free laser-welding is still too expensive
- Welded clips could instead reduce the weight provided that the technology is being further developed

Welded metallic airframe

Jens Viefhaus | DESY Summer Student Common Lectures, DESY Hamburg | July 30, 2009 | page 19

Micro-Tomography of Complex Samples

Characterization of Al-alloy T-joints, first results:

Visualisation of different sorts of pores

pore

- Clear separation of the weld and raw materials
- High density resolution using absorption contrast

Micro-Tomography at 40 keV

Grain mapping of metals and alloys

- > Change of microstructure of a material upon mechanical load and deformations?
- Grain properties to be determined: > position morphology orientation deformation (plastic/elastic) 5 µm composition 3 m Sample Beam 2θ $2\theta = 28^{\circ}$ E = 40 keVBeam ΔE/E=5×10-3 stop 100 µm 200 µm Area detector 3D X-ray diffraction microscopy

Principles of Structure Determination

 $\vec{q} = \vec{k} \quad \vec{k_0}$ momentum transfer

Relation between A(x) and A(q):

$$A(q) = \int A(x)e^{iqx}dx \quad (1)$$

Task: Determine A(x) from measured $|A(q)|^2$ Problem: Eq. (1) cannot be simply inverted, because the phase is lost (Phase problem of crystallography)

Principles of Structure Determination

Position of diffraction peaks given by Bragg's equation:

$$\frac{n}{\sin\Theta} = 2d_{h,k,l}$$

X-ray Diffraction - The Phase Problem

and

but

- Nobel prize in chemistry 1985:
 - For the developement of direct methods for the structur determination of cristals

Jerome Karle Herbert A. Hauptman

Jens Viefhaus | DESY Summer Student Common Lectures, DESY Hamburg | July 30, 2009 | page 24

Finding Solutions for the Phase Problem in X-ray Diffraction

- > A priori information on the structure
 - ("educated guess" and then compare with model)
- > MIR Multiple Isomorphous Replacement
 - Besides the structure determination of the original crystal, at least two more crystals doped with heavy atoms have to be measured

> S/MIRAS - Single/Multiple Isomorphous Replacement with Anomalous Signal

- In addition to the original crystal at least one more crystals has to be measured and its doped heavy atoms have to be excited to anomalous diffraction
- MAD Multiple Anomalous Dispersion
 - The crystal has to be doped with an anomalously diffracting atom, which must be measured at several different wavelength

X-ray diffraction - "Guessing" the structure

Measured electron density-distribution

Structure of the a priori information

Result

Jens Viefhaus | DESY Summer Student Common Lectures, DESY Hamburg | July 30, 2009 | page 26

X-ray diffraction - resolution

Naturally the quality of the resulting > structure model depends strongly on the required resolution. Resolutions in the order of 120 pm are state-of-the-art. 300 pm 200 pm 120 pm

Phase Problem - Multiple Isomorphous Replacement

Single Crystal Diffractometer

Single crystal diffractomter in k-geometry with CCD and scintillation counter. Crystal mounted on a glass fiber. the diffractometer has 3 rotations for the crystal and one for the detector

X-ray diffraction of Bio-Molecules

Jens Viefhaus | DESY Summer Student Common Lectures, DESY Hamburg | July 30, 2009 | page 30

X-ray diffraction of extremely large complexes

Example: Blue Tongue Virus

J.M. Grimes et al., Nature 395, 470-478 (1998)

X-ray Scattering from Samples Under High Pressure

X-ray Scattering Under High Pressure

GFZ (GeoForschungs Zentrum Potsdam) @ DESY

1750 t press for in situ studies of large sample volumes
Maximum pressure ~ 25GPa
Temperature: > 2000K
Study of material under the conditions of the earths lower mantle

Jens Viefhaus | DESY Summer Student Common Lectures, DESY Hamburg | July 30, 2009 | page 33

Inelastic X-ray Scattering under High Pressure

X-rays change energy due to interaction with phonons

Example: Determine the speed of sound in Fe under pressure

1 mm

G. Fiquet et al., Science (2000)

X-ray Absorption Spectroscopy

- > Photons are resonantly absorbed near an absorption edge
- > The outgoing electron is scattered by the surrounding atoms
- Interference of the outgoing electron wave with the backscattered electron waves:
 - Modulation of the cross section as a function of energy provides access to information on the distance of neighbour atoms:

X-ray Absorption Spectroscopy: Experimental setup

X-ray absporption spectroscopy

Regions in the X-ray Absorption Spectrum

2D-Mapping of the Structure of a Heterogeneous Catalyst

In-situ 2D-mapping of the catalyst inside a catalytic micro-reactor

Catalyst structure at the atomic level under industrial reaction conditions (dynamic, in situ, in operando)

Example: partial oxidation of methane over Rh/Al₂O₃ promising reaction for the production of hydrogen from natural gas

 $CH_4 + \frac{1}{2}O_2 -> CO + 2H_2$

Rh K-edge absorption spectra • spatial distribution of Rh oxidations states • strong gradients within < 100 m

J.-D. Grunwaldt et al., J. Phys. Chem. B 110, 8674 (2006)

Photoelectric Effect at Ultrahigh Intensities of FLASH (13.5 nm)

Jens Viefhaus | DESY Summer Student Common Lectures, DESY Hamburg | July 30, 2009 | page 40

Ultrafast Coherent Diffractive Imaging at FLASH

Single shot diffractive imaging

- resolution 50 nm
- next shot reveals that target is destroyed

Nature Physics 2, 839 (2006)

Diffraction image (1st shot) reconstruction (1st shot)

Diffraction image (2nd shot)

Ultrafast Movies of Nanoscale Dynamics

Nature Photonics 2, 415–419 (2008)

10

5

q (1/µm)

Hard X-ray Holographic Diffraction Imaging

Diffraction image (and Fourier transform)

Reconstruction (a), resolution test (b) and original structure (c)

- Testbed for single shot imaging at SR ring
 - only 100 spectra with 10⁸ photons each
 - resolution 25 nm

Phys. Rev. Lett. 100, 245503 (2008)

