Detectors for Particle Physics

Lecture 3: Showers and calorimeters Particle flow

D. Pitzl, DESY

Outline

- Lecture 1:
 - Collider detectors
 - Charged particles in a magnetic field
 - Silicon detectors
- Lecture 2:
 - Drift tubes
 - Muon systems
 - MWPCs, CSCs, RPCs, TRTs, TPCs, Cherenkovs
- Lecture 3:
 - Electromagnetic showers and calorimeters
 - Photon detectors
 - Hadronics showers and calorimeters
 - Particle flow technique
- Discussion session:
 - Your questions, please

Photon interactions in matter (A, Z)

Radiation length

High energy photon cross section in lead: $\sigma_{\gamma} = 42 \text{ barn/atom}$

Convert to photon absorption coefficient:

 $\mu_{\gamma} [1/cm] = \sigma_{\gamma} [cm^2/atom] \cdot N_A [atoms/mol] / A [g/mol] \cdot \rho [g/cm^3]$

Define interaction length: $\lambda_{\gamma} = 1/\mu_{\gamma}$

Define radiation length: $X_0 = 7/9 \cdot \lambda_{\gamma}$

Plug in some numbers: $1 \text{ barn} = 10^{-24} \text{ cm}^2$ $N_A = 6 \cdot 10^{23} \text{ atoms/mol}$ A = 207 for lead $\rho = 11.35 \text{ g/cm}^3 \text{ for lead}$

 \Rightarrow radiation length of lead: $X_0 = 0.56$ cm.

Radiation Loss for electrons in matter

 $\Leftrightarrow E = E_0 e^{-x/X_0}$

 Bremsstrahlung: e Z → Z e γ electromagnetic radiation produced by the deceleration of an electron, when deflected by an atomic nucleus.

$$-\frac{dE}{dx} = \frac{E}{X_0} \qquad X_0[cm] = \frac{716}{\rho[g/cm^3]} \frac{A}{Z} \frac{1}{(Z+1)\ln(287/\sqrt{Z})}$$

Pb:
$$X_0 = 0.56 \text{ cm}$$

Si: $X_0 = 8.9 \text{ cm}$

Pair production and Bremsstrahlung

- Very similar Feynman diagrams
- Just two arms swapped.

At high energy: $\sigma_{\gamma} = 7/9 \sigma_{e}$

Muons radiate only at extreme energies

A particle of mass **m** may radiate a photon while being decelerated in the Coulomb field of a nucleus **Z**:

D. Pitzl, DESY

Detectors 3.7

Electron lower in energy

Electromagnetic Showers

Shower in a cloud chamber

• Cloud chamber image of a shower between lead plates.

A simple shower model

Start with a high energy electron: E_0

 \Rightarrow After $1X_0$: 1 e⁻ and 1γ , each with $E_0/2$

 \Rightarrow After $2X_0$: 2 e⁻, 1 e⁺ and 1 γ , each with $E_0/4$

 \Rightarrow After kX_0 : total N = 2^k, each with $\langle E \rangle = E_0/2^k$

At $\langle E \rangle = E_c$ pair production and bremsstrahlung stop.

Compton- or photoeffect and ionization take over. The shower ranges out. $E_c = 0.6 \text{ GeV} / (Z+1.24) = 7 \text{ MeV}$ for lead. (empirical fit by the PDG)

 \Rightarrow k_{max} = lg₂(E₀/E_c). Shower depth grows logarithmically with E₀.

 \Rightarrow N_{max} = 2^{kmax} = E₀/E_c. Number of shower particles grows linearly with E₀.

D. Pitzl, DESY

Electron energy loss and critical energy

relative energy loss for electrons:

Critical energy: energy loss due to Bremstrahlung and ionization are equal:

$$E_c \approx \frac{610 \ MeV}{Z + 1.24}$$

High Z material gives more signal: shower stops later

A sophisticated shower simulation

Detectors 3.12

Shower simulation 1 GeV e⁻ in lead

interactive at http://www2.slac.stanford.edu/vvc/egs/basicsimtool.html

D. Pitzl, DESY

Detectors 3.13

DESY summer students lecture 5.8.2009

Energy measurement

Total number of particles in the shower in the simple model: $N_{tot} = \sum_k 2^k = 2 k_{max} - 1 \approx 2 E_0 / E_c$

2/3 of N_{tot} are charged $(e^+ + e^-)$. $\Rightarrow N_{ch} \approx 4/3 E_0 / E_c$

Each *e* travels 1 X0 between interactions. \Rightarrow total path length: $L_{ch} \approx 4/3 X_0 E_0 / E_c$

Electrons and positrons also **ionize** the medium. collect charge or fluorescent light signal: $S \sim X_0 E_0 / E_c$

After calibration, S is an energy measurement!

Shower fluctuations: particle production is a Poisson process. $\Rightarrow \sigma(N) = \sqrt{N}$

 $\Rightarrow \sigma(S) / S = 1 / \sqrt{S}$ The relative energy resolution improves with E₀!

D. Pitzl, DESY

Detectors 3.14

CMS PbWO Crystals

Photomultiplier Tube

- Light falls on a photocathode and a photoelectron is emitted (photo effect)
 - Quantum Efficiency depends on cathode material and wavelength (QE ~ 25%)
- Photoelectron focused and accelerated towards the first **dynode** by electric field.
- Photoelectron strikes dynode and several electrons are emitted (on average n ~ 5)
- Several dynodes (~ 10-15) give high gain (10⁷)
- High speed: few ns transit time.
- Gain can be much lower in magnetic fields, depending on orientation.

Source: Cutnell and Johnson, 7th edition image gallery

Vacuum photo-triodes

radiation-resistant UV glass window used in the CMS endcap ECAL.

D. Pitzl, DESY

Avalanche Photodiode

85% quantum efficiency

300-400 V reverse bias:

photoelectrons create cascade of electron-hole pairs in the bulk. Gain ~100 in linear mode. Low sensitivity to magnetic field.

APD gain decreases by 2.3%/°C. Crystal light yield decreases by 2.2%/°C Need temperature stabilization within 0.1°C in the ECAL!

> 2 avalanche photodiodes per crystal in the barrel:

Avalanche Photodiode

CMS EM Calorimeter Readout

Test beam calibration

Response of a $PbWO_4$ calo to a 120 GeV e⁻ test beam:

CMS ECAL Test beam with final electronics.

D. Pitzl, DESY

DESY summer students lecture 5.8.2009

Energy resolution terms

- The intrinsic shower fluctuations give $\sigma(E) \sim \sqrt{E}$
- Fluctuations in the photo-electron yield also give $\sigma(E) \sim \sqrt{E}$
- Noise (electronics, radiation) gives a constant term: $\sigma(E) = c$
- Inhomogeneities and leakage give $\sigma(E) \sim E$

$$\frac{\sigma(E)}{E} = \frac{2.4\%}{\sqrt{E}} \oplus \frac{142 \text{ MeV}}{E} \oplus 0.44\%$$

Higgs decay into two Photons

Sampling calorimeter

Absorber and detector are separated as passive and active layers.

The active detector material **samples** a fraction F of the shower. The detector signal is still proportional to the incident energy. Allows longitudinal segmentation, good for hadrons. Energy resolution is degraded $\sim 1/\sqrt{F}$ ('sampling fluctuations'). Less expensive.

varieties of sampling calorimeters

DESY summer students lecture 5.8.2009

ATLAS LAr ECAL

3 sections:

- strips for position resolution
- middle for energy measurement
- back for leakage control

- Pb absorber in LAr
- Accordion geometry for routing of readout signals to the back
- Allows dense packing and fine granularity.

ATLAS LAr ECAL

Cu electrodes at +HV

Spacers define LAr gap $2 \times 2 \text{ mm}$

2 mm Pb absorber clad in stainless steel.

ATLAS LAr Barrel ECAL Linearity

within 0.1% for 15-180 GeV, E=10 GeV 4 per mil too low, reason unclear& D. Pitzl, DESY DESY summer stude

DESY summer students lecture 5.8.2009

ATLAS LAr Barrel ECAL resolution

2002 test beam data

Photon conversions in the ATLAS tracker simulation

 $\gamma Z \rightarrow Z \; e^+ \; e^-$

30% - 50% of all photons convert in front of the calorimeter!

LHC tracker material budget

Major difference / advance to LHC detectors is needed:

The detector TDR 1996

D. Pitzl, DESY

DESY summer students lecture 5.8.2009

Electron tracks radiate

e track has lower momentum.

Hadronic showers

Hadronic showers may already start in the ECAL and extend into the HCAL.

Detectors 3.34

Hadronic interaction length

- Pion-proton cross section $\sigma(\pi p) \approx 25$ mbarn above a few GeV.
- $\sigma(\pi A) \approx \sigma(\pi p) A^{2/3}$ (black disk limit).
- \Rightarrow hadronic interaction length:

$$\lambda_I = \frac{A}{\sigma N_A \rho} = \frac{35 \ cm}{\rho} A^{1/3}$$

- $\lambda_{\rm I} = 17 \text{ cm in Fe or Pb.}$
- Much larger than X₀.

Hadronic showers

- Hadronic interaction have high multiplicity:
 - Shower is to 95% contained in $\sim 7\lambda$ at 50 GeV (1.2m of iron).
- Hadronic interactions produce π^0 :
 - $\pi^0 \rightarrow \gamma \gamma$, leading to local EM showers ('hot spots', ~30%)
- Some energy lost in nuclear breakup and neutrons ('invisible energy', 15-35%).
- Stronger fluctuations in a hadronic shower:
 - Worse energy resolution.

2 hadronic showers

A good hadron calorimeter should have equal response to hadrons and electrons ('hardware compensation') or high granularity to isolate the hot spots ('software compensation')

Detectors 3.37

Hadron shower transverse size

T.S.Virdee, Proc. of the 1998 European School of High-Energy Physics, CERN 99-04

- Transverse shower development:
 - The secondaries have significant transverse momenta and produce a wide shower (compared with EM showers)
 - Part of the shower gets an electromagnetic nature (i.e. The decay of the π⁰ produced in the interaction) and does remain inside a narrow cylinder (two times the Moliere radius)

CMS Hadron calorimeter

Alternating layers of 5 cm brass absorber (70% Cu + 30% Zn) and 4 mm plastic scintillator. Readout by optical fibers and hybrid photodetectors.

CMS HCAL readout

- Scintillators coupled to readout fibers.
- Bundles of fibers coupled to an avalanche photodiode
- ECAL+HCAL energy resolution for pions:

$$\frac{\sigma\left(E\right)}{E} = \frac{127 \%}{\sqrt{E}} \oplus 6.5 \%$$

Inserting the CMS Hadron Calorimeter

D. Pitzl, DESY

ATLAS tile calorimeter

ATLAS LAr + Tile for pions:

$$\frac{\sigma(E)}{E} = \frac{42\%}{\sqrt{E}} \oplus 2\%$$

D. Pitzl, DESY

DESY summer students lecture 5.8.2009

Jets in the CMS hadron Calorimeter

$$p p \rightarrow H^{0} \rightarrow Z Z$$

$$\downarrow \qquad \qquad \downarrow jet jet$$

$$e^{+} e^{-}$$

Jet energy resolution

A new concept: Particle Flow

- Goal: measure jets with 30% / \sqrt{E}
 - Resolve $W \rightarrow jet jet (80.4 \text{ GeV})$
 - from $Z \rightarrow jet jet (91.2 \text{ GeV})$
 - in events with 4 jets:

m(1+2)

Particle flow simulation

idea: reconstruct each particle separately: tracks, γ , n, K_{L}^{0} , μ

reconstructed

generated

from: http://llr.in2p3.fr/activites/physique/flc/justif/justif-granul.html D. Pitzl, DESY

DESY summer students lecture 5.8.2009

Detector for a 500 GeV linear e⁺e⁻ collider

- Strong solenoid field
- Thin silicon pixel vertex detector
- Large TPC drift chamber
- High granularity Si-W EM calorimeter
- High granularity hadron calorimeter
- Muon detector
- Design studies in progress
- Prototypes in test beams.

ILC vs LHC

ATLAS, LHC tracking in a tt event

ILC tracking and calorimetry in a tt event

D. Pitzl, DESY

Detector for a 500 GeV linear e⁺e⁻ collider

- **Muon detector**
- Strong solenoid field
- High granularity hadron calorimeter
- High granularity Si-**WEM calorimeter**
- Large TPC drift chamber
- Thin silicon pixel vertex detector

Detectors for a 500 GeV linear e⁺e⁻ collider

ILD

silicon pixel Si strip tracker SiW EM calo Fe-gas pad HCAL 5T solenoid iron yoke 234 physicists silicon pixel drift tracker crystal EM calo dual fiber HCAL 4T solenoid anti-solenoid 140 physicists

3/2009: Letters of intent. 2012: Design reports, 201?: start construction

D. Pitzl, DESY

DESY summer students lecture 5.8.2009

Summary

- Lecture 1:
 - Collider detectors
 - Charged particles in a magnetic field
 - Silicon detectors
- Lecture 2:
 - Drift tubes
 - Muon systems
 - ► MWPCs, CSCs, RPCs, TRTs, TPCs, Cherenkovs
- Lecture 3:
 - Electromagnetic showers and calorimeters
 - Photon detectors
 - Hadronic showers and calorimeters
 - Particle flow technique
- Discussion session:
 - Your questions, please