Detectors for Particle Physics

Lecture 1: Collider detectors Tracking with silicon

Detectors 1.1

Outline

- Lecture 1:
 - Collider detectors
 - Charged particles in a magnetic field
 - Silicon detectors
- Lecture 2:
 - Drift detectors
 - Muon systems
 - ► TRTs, TPCs, Cherenkovs
- Lecture 3:
 - Electromagnetic showers and calorimeters
 - Photon detectors
 - Hadronic showers and calorimeters
 - Particle flow technique
- Discussion sessions:
 - Your questions, please

The Large Hadron Collider at CERN

proton-proton collisions at an energy of 14 TeV start: Fall 2009 (at 8-10 TeV)

LHCh

26.7 km circumference

CMS

Superconducting LHC bending magnets

1200 dipoles installed. Final tests underway...

LHC Experiments underground

Head-on collisions

Some energy is converted into secondary particles at large angles.

Collision occur every 25 ns. 20 pp interactions at the same time. (mostly producing low energy secondaries)

An interesting collision at the LHC (simulation)

Particles, interactions, and signatures

neutrinos	none	Missing energy
electrons	Ionisation, electromagnetic	Track and EM shower
muons	Ionisation	Penetrating track
p, K, π	Ionisation, hadronic	Track and hadron shower
photons	electromagnetic	EM shower
neutrons, K ⁰ _L	hadronic	hadron shower
B, D	Weak decay	Secondary vertex
J/ψ , Y , W, Z, H, t	prompt decay	Invariant mass

Particles Signatures and detectors

Watching the collisions

Surround the collision point by a detector to capture the secondary particles.

Leptons are rare in pp collisions: emphasize muons and electrons!

Surrounding the beam pipe

Detector design criteria

- Coverage and hermeticity:
 - Capture all particles.
 - No holes, no cracks, no dead regions.
- Resolution:
 - Resolve all particles (high granularity, many channels).
 - Measure energies and directions with high precision.
- Constraints:
 - Cost and available technology.
 - ▶ Beam pipe and first machine magnets.
 - Mechanics, power and signal cables, cooling.
 - ► Radiation.

ATLAS: A Toroidal LHC Aparatus

• ATLAS detector:

diameter 25 m, length 46 m, mass 7,000 tons, 10⁸ channels, 3,000 km cables

Detectors 1.13

CMS: Compact Muon Spectrometer

Detectors 1.14

CMS is 'compact' compared to ATLAS

A slice of CMS

ATLAS vs CMS

	ATLAS	CMS
Tracker or Inner Detector	Silicon pixels, Silicon strips, Transition Radiation Tracker. 2T magnetic field	Silicon pixels, Silicon strips. 4T magnetic field
Electromagnetic calorimeter	Lead plates as absorbers with liquid argon as the active medium	Lead tungstate (PbWO ₄) crystals absorb and respond by scintillation
Hadronic calorimeter	Iron absorber with plastic scintillating tiles as detectors in central region, copper and tungsten absorber with liquid argon in forward regions.	Stainless steel and copper absorber with plastic scintillating tiles as detectors
Muon detector	Large air-core toroid magnets with muon chamber form outer part of the whole ATLAS	Muons measured already in the central field, further muon chambers inserted in the magnet return yoke

Let's add a magnetic field!

Charged particles bend in the magnetic field

The lower the particle momentum the more they bend.

Straight tracks from high momentum particles are the most interesting!

Magnets

Field direction along beam axis. Homogenous field inside the coil. Need surrounding iron structure to capture the 'return field'. CMS: I = 20 kA, B = 4T. Superconducting (4K). Field circles around the detector. Detailed field map needed. No iron structure needed. ATLAS: I = 20 kA, B up to 4 T. Superconducting (4K).

D. Pitzl, DESY

Bending muons in CMS and ATLAS

D. Pitzl, DESY

CMS solenoid

D. Pitzl, DESY

Detectors 1.22

Charged particles in a magnetic field

Lorentz Force:

$$\vec{F}_L = q \, \vec{v} \times \vec{B}$$

$$\otimes \vec{B}$$
 R

For B = constant: circular motion in the transverse plane. Equation of motion: Lorentz force balanced by centrifugal force: $q v_t B = m v_t^2 / R$

$$p_{t} = m v_{t} \implies p_{t} = qRB \text{ also holds relativistically.}$$

$$cp_{t} [GeV] = 0.3 R [m] B [T]$$
for q = e
$$CMS: B = 4 T$$

$$p_{t} [GeV/c] R [m]$$

$$100 \quad 83.33$$

$$10 \quad 8.33$$

$$10 \quad 8.33$$

$$10 \quad 8.33$$

$$10 \quad 8.33$$

D. Pitzl, DESY

Detectors 1.23

Sagitta measurement

Momentum resolution

Sagitta:
$$s = x_2 - \frac{x_1 + x_3}{2}$$

Error propagation: $\sigma_s^2 = \sigma_2^2 + \sigma_1^2/4 + \sigma_3^2/4$ (usually Gaussian)
All σ equal: $\sigma_s = \sqrt{3/2} \sigma_x$ $p_t = qBL^2/8s$
 $\Rightarrow \sigma_{p_t}/p_t = \sigma_s/s = \sqrt{96} \sigma_x p_t/qBL^2$ (always non-Gaussian)
N equidistant measurements: $\sigma_{p_t}/p_t = \sqrt{720/(N+4)} \sigma_x p_t/qBL^2$
(Glückstern 1964)
Note: $\sigma_{p_t}/p_t \sim p_t$ worse resolution at high p_t .
 $\sigma_{p_t}/p_t \sim \sigma_x/BL^2$ want large, precise tracker, strong field.

D. Pitzl, DESY

Detectors 1.25

CMS Event Display

Tracker and ECAL $H \rightarrow ZZ, Z \rightarrow ee and Z \rightarrow jet jet$

Principles of a measurement

- 1. The particle must interact with the detector material.
- 2. An effect of the interaction must be measured.

- The ions may change the material physically or chemically:
 - Cloud chamber, bubble chamber, photographic emulsion.
- The particle may also be affected:
 - energy loss, scattering, absorption

D. Pitzl, DESY

Silicon strip detectors

- Planar sensor from a high-purity silicon wafer (here *n*-type).
- Segmented into strips by implants forming *pn* junctions.
- Strip pitch 20 to 200 µm, high precision photolithography (expensive).
- Bulk is fully depleted by a reverse bias voltage (25-500V).
- Ionizing particle creates electron-hole pairs (25k in 300 μm).

Figure 2.8: Schematic structure of a CMS silicon microstrip sensor.

Charge collection

- Electrons and holes are separated in the electric field and collected on the implanted strips:
 - Electrons drift 10 ns
 - Holes drift 25 ns
 - Need high-purity silicon to avoid trapping.
- Position resolution: 15-30 µm for strip pitch of 50-100 µm (better with pulse-height interpolation).
- Silicon detectors are fast and have high resolution.
- Further readout electronics required to amplify the charge.
 - Need many channels to cover large areas.

Drift and charge collection

Drift in a magnetic field occurs at the Lorentz angle:
Systematic shift of charges must be taken into account.
Position resolution is worse for inclined tracks:
avoid by proper detector design: barrel cylinders and endcap disks.

Pulse height distribution

SILICON MICROSTRIP DETECTOR

CMS Silicon tracking

One outer barrel module:

Carbon-fibre support structure. Sensor alignment needed, despite tight mechanical tolerances and accurate placement.

CMS Silicon Strip Modules

Inner barrel module:

stereo layers are realized gluing back to back two modules

D. Pitzl, DESY

Detectors 1.34

Module components

Detectors 1.35

CMS Silicon Tracker

D. Pitzl, DESY

Detectors 1.36

ATLAS Inner Tracker

Silicon pixel detector in the centre Semiconductor tracker (SCT) Transition radiation tracker (TRT).

DESY summer students lecture 3.8.2009

ATLAS silicon tracker module

Single sided sensors $6.4 \times 6.4 \text{ cm}^2$ 738 strips 80 µm pitch 2 sensors connected

2 sensors back-to-back 40 mrad stereo angle

ATLAS silicon front-end ASIC ABCD3T

- 128 channels
- DMILL radiation hard process
- bipolar input transistor
- shaping time ~20ns
- comparator threshold trimmable for each channel
- binary read-out
- 132 cell pipeline
- edge detection, data reduction and multiplexing
- noise ~ 1500 e for 12 cm strips, increasing to ~1800 e after 10 years of irradiation
- power: ~4 mW/channel

D. Pitzl, DESY

Detectors 1.39

Silicon Pixels

Requires readout chip bump-bonded to the sensor:

Detectors 1.40

CMS silicon Pixel Detector

installed last week

New idea: 3D sensors

"3D" electrodes:

narrow columns along detector thickness, diameter: 10 μm , distance: 50 - 100 μm

Lateral depletion:

lower depletion voltage needed thicker detectors possible fast signal radiation hard

3D sensors: first prototype

- Simplified process
 - hole etching and doping only done once
 - no wafer bonding technology needed

D. Pitzl, DESY

Multiple Coulomb scattering

• Multiple elastic scattering from nuclei causes angular deviations:

Number of scatterings is Poisson process \Rightarrow RMS ~ \sqrt{d}

Important at low momentum: ~1/p

CMS momentum resolution

Multiple scattering and momentum resolution:

$$\sigma_{p_t}^{MS} / p_t \approx \frac{0.016}{BL} \sqrt{\sum d / X_0}$$

D. Pitzl, DESY

Detectors 1.45

Summary

- Collider detectors:
 - Tracking calorimeters magnet muons
- Charged particles in a magnetic field:
 - $p_t [GeV/c] = 0.3 R [m] B [T]$
- Momentum resolution:

$$\frac{\sigma_{p_t}}{p_t} \sim \frac{\sigma_x}{\sqrt{N}} \frac{p_t}{BL^2} \oplus \frac{\sqrt{d/X_0}}{BL}$$

- Silicon detectors:
 - $\sigma_{\rm x} \approx 20 \,\mu{\rm m}$
- Pixel detectors for 3D information.

Literature

Text books:

C.Grupen:	Particle Detectors, Cambridge UP ² 2008, 680p	
D.Green:	The physics of particle Detectors, Cambridge UP 2000	
K.Kleinknecht:	Detectors for particle radiation, Cambridge UP, ² 1998	
W.R. Leo:	Techniques for Nuclear and Particle Physics Experiments, Springer 1994	
G.F.Knoll:	Radiation Detection and Measurement, Wiley, ³ 2000	
W.Blum, L.Rolandi:	Particle Detection with Driftchambers, Springer, 1994	
G.Lutz:	Semiconductor radiation detectors, Springer, 1999	
R. Wigmans:	Calorimetry, Oxford Science Publications, 2000	
Review articles: T.Ferbel (ed):	Experimental Techniques in High Energy Physics, Addison-Wesley 1987	
web: Particle Data Group:	Review of Particle Properties: pdg.lbl.gov	