Elementary Particle Physics Research

Achim Geiser, DESY Hamburg Summer Student Lecture, 29./30.7.08

Scope of this lecture:

 Introduction to particle physics for non-specialists
 arather elementary
 more details -> specialized lectures
 particle physics in general
 some emphasis on DESY-related topics

thanks to B. Foster for some of the nicest slides/animations other sources: www pages of DESY and CERN

What is Particle Physics?

What is a "particle"?

Classical view: particles = discrete objects.

Isaac

Newton

energy concentrated into finite space with definite boundaries.

Particles exist at a specific location.

-> Newtonian mechanics

Modern view:

particles = objects with discrete quantum numbers, e.g. charge, mass, ...

not necessarily located at a specific position. (Heisenberg uncertainty principle) can also be represented by wave functions (Quantum mechanics, particle/wave duality)

29.7.08

Louis de Broglie (Nobel 1929)

Werner Heisenberg (Nobel 1932)

A. Geiser, Particle Physics

What is "elementary"?

Greek: atomos = smallest indivisible part

Dmitry

Ivanowitsch

Mendeleyev

1868

(elements) Ernest Rutherford 1911 (nucleus) (Nobel 1908)

Murray Gell-Mann 1962 (quarks) (Nobel 1969)

29.7.08

History of basic building blocks of matter

Which Interactions?

The Forces in Nature

TYPE	at ~ 1 GeV INTENSITY OF FORCES (DECREASING ORDER)	BINDING PARTICLE (FIELD QUANTUM)	OCCURS IN :
STRONG NUCLEAR FORCE	~ 1	GLUONS (NO MASS)	ATOMIC NUCLEUS
ELECTRO -MAGNETIC FORCE	~ 10 ⁻³	PHOTONS (NO MASS)	ATOMIC SHELL ELECTROTECHNIQUE
WEAK NUCLEAR FORCE	~ 10 ⁻⁵	BOSONS Zº, W+, W- (HEAVY)	RADIOACTIVE BETA DESINTEGRATION
GRAVITATION	~ 10 ⁻³⁸	GRAVITONS (?)	HEAVENLY BODIES

What we know today

The Power of Conservation Laws

confirmation: neutrino detection

Reines and Cowan, neutrinos from nuclear reactor

Conservation laws remain valid down to microscopic scales!

The power of symmetries: Parity

Will physical processes look the same when viewed through a mirror?

In everyday day life: violation of parity symmetry is common "natural": our heart is on the left "spontaneous": cars drive on the right (on the continent)

- What about basic interactions?
 - Electromagnetic and strong interactions conserve parity!

The power of symmetries: Parity

Lee & Yang 1956: weak interactions violate Parity

experimentally verified by Wu et al. 1957:

The Power of Quantum Numbers

The Power of Precision

Precision measurements of shape and height of Z⁰ resonance at LEP I

A. Geiser, Particle Physics

Can we "see" particles?

A generic modern particle detector

Why do we need colliders?

early discoveries in cosmic rays, but need controlled conditions

Ľ

 \mathcal{M} need high energy to discover new heavy particles

colliders = microscopes (later) 29.7.08

The HERA ep Collider and Experiments

Data taking stopped summer 2007. Data analysis ongoing. Visits this Thursday/Friday.

Particle Physics = People

Strong Interactions: Quarks and Colour

strong force in nuclear interactions

- = "exchange of massive pions" between nucleons
- = residual Van der Waals-like interaction

Hideki Yukawa (Nobel 1949)

 modern view:
 (Quantum Chromo-Dynamics, QCD) exchange of massless gluons between quark constituents

"similar" to electromagnetism (Quantum Electro-Dynamics, QED)

The Quark Model (1964)

arrange quarks (known at that time) into flavour-triplett => SU(3)_{flavour} symmetry

treat all known hadrons (protons, neutrons, pions, ...) as objects composed of two or three such quarks (antiquarks)

> Murray Gell-Mann

> > (Nobel 1969)

The Quark Model

Colour

Quark model very successful, but seems to violate quantum numbers (Fermi statistics), e.g. $|\Delta^{++}\rangle = |uuu\rangle|\uparrow\uparrow\uparrow\rangle$ => introduce new degree of freedom:

3 coulours -> SU(3)_{colour}

$qqq = q\overline{q} = white!$

A. Geiser, Particle Physics

Screening of Electric Charge

Sin-Itoro Julian Richard P. A. Geiser, Particle Physics Tomonaga Schwinger Feynman

electric charge polarises vacuum -> virtual electron positron pairs

positrons partially screen electron charge

effective charge/force

- decreases at large distances/low energy (screening)
- increases at small distance/large energy

Anti-Screening of Coulour Charge!

quark-antiquark pairs -> screening
gluons carry colour -> gg pairs -> anti-screening!

The Nobel Prize in Physics 2004

"for the discovery of asymptotic freedom in the theory of the strong interaction"

29.7.08

Comparison QED / QCD

electromagnetism

<u>QED</u>

1 kind of charge (q)
force mediated by **photons**photons are *neutral*α is nearly constant

strong interactions

<u>QCD</u>

3 kinds of charge (r,g,b)force mediated by **gluons** gluons are *charged* (eg. rg, bb, gb) α_s strongly depends on distance

The underlying theories are formally almost identical!

The effective potential for $q\bar{q}$ interactions

Heavy Quark Spectroscopy

Burton Richter

How to detect Quarks and Gluons?

Jets!

- Example of the hadron production in $e^+e^$ annihilation in the JADE detector at the PETRA e^+e^- collider at DESY,
- Germany.

Georges Charpak

(Nobel 1992)

67

8ª 5

868 368

- cms energy 30 GeV.
- Lines of crosses reconstructed trajectories in drift chambers (gas ionisation detectors).
- Photons dotted lines detected by lead-glass Cerenkov counters.
 - Two opposite jets.

Discovery of the Gluon (1979)

Günter Wolf

Sau Lan Wu

Jets in ep interactions (HERA)

Good agreement with NLO over six orders of magnitude, dominant uncertainty due to theory

Running coupling α_s from jet production

HERA

Good agreement with expected running of α_S Consistent and competitive measurement of α_S between HERA and LEP

Running coupling α_{s} from other measurements

A. Geiser, Particle Physics

How to determine the "size" of a particle?

microscope: low resolution -> small instrument

high resolution -> large instrument

How to resolve the structure of an object?

e.g. X-rays (Hasylab, FLASH) E~ keV

-> structure of a biomolecule

Resolve the structure of the proton

- E ~ MeV resolve whole proton
- static quark model,
 valence quarks
 (m ~ 350 MeV)
- E ~ m_p ~ 1 GeV resolve valence quarks and their motion
- E >> 1 GeV resolve quark and gluon "sea"

1/3

1/3

Jerome I. Henry W. Richard E. Friedmann Kendall Taylor (Nobel 1990)

Inside the proton

Deep Inelastic ep Scattering at HERA

Deep Inelastic Scattering (DIS)

► 2 degrees of freedom at fixed cms energy $s = (l + p)^2$

boson virtuality (resolution scale)

fractional momentum of struck quark

 $Q^2 = -(l-l')^2$

$$x = \frac{Q^2}{2p \cdot q}$$

in the second se

Parton distribution functions (PDF) in pQCD

$$F_2^{\text{em}}(x, Q^2) = x \sum_i e_i^2 [q_i(x, Q^2) + \bar{q}_i(x, Q^2)]$$

 q_i – probability to find quark with flavour *i* in proton

The Proton Structure

Kinematic regions: HERA vs. LHC

proton structure measured directly for large part of LHC phase space

- QCD evolution successful
- -> safely extrapolate to high Q² or low x

Example: Higgs cross section at LHC

Knowledge of gluon and quark distributions essential

Intermediate summary

Particle physics: Symmetries and conservation laws are important many exciting results at DESY and elsewhere! e.g. quarks, gluons, protons HERA closed down, but particle physics at DESY continues tomorrow: weak interactions, Higgs, (neutrinos), cosmology, future of particle physics

Weak Interactions

The Theory of GLASHOW, SALAM and WEINBERG

(Nobel 1979)

Theory of the unified weak and electromagnetic interaction, transmitted by exchange of "intermediate vector bosons"

Discovery of the W and Z (1983)

- To produce the heavy W and Z bosons (m ~ 80-90 GeV) need high energy collider!
- 1978-80: conversion of SPS proton accelerator at CERN into proton-antiproton collider challenge: make antiproton beam!

success! -> first W and Z produced 1982/83

Simon van der Meer

Three Boson Coupling @ LEP

W/Z bosons carry electroweak charge (like gluons) -> measure rate of W pair production at LEP II

47

Electroweak Physics at HERA

Weak interactions are "left-handed"

Electroweak Unification

The Quest for Unification of Forces

α_{s} from HERA and Grand Unification

Antimatter

relativistic Schrödinger equation (Dirac equation) two solutions: one with positive, one with negative energy Dirac: interpret negative solution as

P.A.M. Dirac (Nobel 1933)

1932 antielectrons (positrons) found in conversion of energy into matter

1995 antihydrogen consisting of antiprotons and positrons produced at CERN

In principle: antiworld can be built from antimatter In practice: produced only in accelerators and in cosmic rays

29.7.08

Pair Production

Annihilation

$$e^+ + e^- \rightarrow 2hf$$

Antimatter can be produced. It annihilates with matter to produce radiation

The Matter Antimatter Puzzle

As far as we can see in universe, no large-scale antimatter. -> need CP violation! 56

The Matter Antimatter Puzzle

Early Universe

-> particles, anti-particles and photons in thermal equilibrium

- colliding, annihilating, being re-created etc.

Slight difference in fundamental interactions between matter and antimatter ("CP violation") ? -> matter slightly more likely to survive

Ratio of baryons (e.g. p, n) to photons today tells us about this asymmetry – it is about 1:10⁹

CP symmetry

Like weak interaction, symmetric under CP (at first sight!) Can there be small deviations from this symmetry?

29.7.08

CP violation in B meson decays

CP violation in B meson decays

Example: recent measurement from BaBar at SLAC

contribution to the antimatter puzzle from HERA?

CP violation measured so far not strong enough to explain matter-antimatter asymmetry

- way out: CP violation in neutrino oscillations (see C. Hagner) and/or strong lepton number asymmetry in early universe (see A. Lindner).
- Standard Model predicts baryon and lepton number violation through so-called "sphaleron" process: converts 3 leptons into 3 baryons!

- rare process at very high energy -> not observable so far
- related process: QCD "instantons"
 in principle observable at HERA!
 still searching ...

Fermion Mass from Higgs field?

Fermion Mass from Higgs field?

Fermion Mass from Higgs field?

How much do Neutrinos weigh?

from the lightest ...

Standard Model has $m_v = 0$

-> evidence for $m_v \neq 0$ forces

> **Extension of** Standard Nodel

see lectures C. Hagner! (last week)

The quest for the top quark

Electroweak precision measurements at LEP/CERN sensitive to top quark mass and Higgs mass (indirect effects)

29.7.08

The Tevatron (Fermilab)

Top quark discovery (Fermilab 1995)

Top quark actually found where expected!

Tevatron at Fermilab (CDF + D0)

recent mass value: (EPS07) $M_{top} = 170.9 \pm 1.8 \ GeV/c^2$

Precision @ LEP and Higgs

insert measured top mass into precision measurements at LEP -> now sensitive to Higgs mass (last undetected particle of Standard Model!)

m_H < 182 GeV at 95% CL

current direct lower limit:

m_H > 114 GeV at 95% CL

The LHC Project

The DESY CMS group

Installation & Commissioning

- Computing
- High Level Trigger
- Beam Condition Monitor
- Forward detectors (CASTOR)
- Data Quality Monitoring
- Physics
 - Standard Model
 - Forward Physics
 - Top + Higgs

The DESY ATLAS group

- High level trigger
- Computing
- Lumi monitor (ALFA)
- sLHC upgrade
- Physics:
 - Standard Model
 - Top quarks
 - Supersymmetry

LHC startup exhibition

for the general public Berlin, U-Bahnhof Bundestag, 15.10-16.11. 2008

Kanzleramt

Paul-Loebe-Haus

Reichstag

The Quest for the Higgs at LHC

Supersymmetry

 A way to solve theoretical problems with Unification of Forces: Supersymmetry
For each existing particle, introduce similar particle, with spin different by 1/2 unit

Supersymmetry

double number of particles:

Standard-Teilchen

SUSY-Teilchen

Unification and Superstrings

To include gravity in unification of forces, need Superstrings (Supersymmetric strings)

Superstring interaction

Extra Dimensions?

Superstrings require more than 3+1 dimensions
additional "extra" dimensions -> "curled up"

- could be as large as a mm!

Large extra dimensions: virtual graviton exchange

Virtual graviton exchange in t-channel interferes with Deep Inelastic Scattering (DIS)

Exchange of Kaluza-Klein tower (KK) affects Q^2 distribution at high Q^2

Compare $d\sigma/dQ^2$ to what is expected from SM

Large extra dimensions: virtual graviton exchange

Zeus	\$ ^{1/2} (GeV)	L _{int} (pb ⁻¹)
e⁺p	301/319	112
e⁻p	319	16

 $d\sigma/dQ^2$ used in binned likelihood => 95% CL limits on M_{S} (TeV)

 $\lambda = -1 : M_{s} > 0.79 \text{ TeV}$

 λ = +1 : M_S > 0.78 TeV

29.7.08

A. Geiser, Particle Physics

82

The case for an e+e- Linear Collider

for more see lectures K. Buesser

- Historically, hadron (proton) and electron colliders have yielded great symbiosis: 10,000
- hadron colliders: discoveries at highest energies
- electron colliders: discoveries and precision measurements
- latest example: Tevatron/LEP (top)

=> International Linear Collider!

Example: Higgs Physics at the ILC

A. Geiser, Particle Physics

Cosmology

History of the Universe

Direct link between Particle Physics and Cosmology

increasing energy

- -> going further backwards in time in the universe
- -> getting closer to the Big Bang

A. Geiser,

Galaxy formation 1000 M years

Galaxies begin to form

Elementary Particle Physics is exciting!

We already know a lot, but many open issues

Exciting new insights expected for the coming decade!

Backup Slides

Why ILC?

If LHC finds Higgs ILC will study its detailed properties If LHC does not find Higgs -> Problem with Standard Model, only ILC can study why (precision measurements) If LHC finds SUperSYmmetery ILC will study SUSY particles, and potentially find/distentangle many more If LHC does not find SUperSYmmetry ILC might provide indirect evidence (precision measurements) + potential unexpected discoveries ... Compositeness, Large Extra Dimensions, indirect effects from Superstrings, ...

How much do Neutrinos weigh?

Standard Model has $m_v = 0$

-> evidence for m_v ≠ 0 forces

> **extension of Standard Nodel**

nothing? or almost nothing?

Neutrinos in Cosmology

Neutrinos from the Sun

~7 x 10¹⁰ v's / cm² s measure ~ half predicted!?

Raymond Davis Jr (Nobel 2002) Masatoshi Koshiba

The sun in neutrino "light" (Super-Kamiokande)

A. Geiser, Particle Physics

A. Geiser, Particle Physics

University of Hamatimedia gr

Solution: Neutrino Oscillations

simplified case: two neutrino flavours, simple quantum mechanics

Solution for "Solar" Neutrinos

Solution for "Atmospheric" Neutrinos

Conclusions for Neutrinos

Neutrino oscillations established

- -> Neutrinos have mass
- -> Extend Standard Nodel
- How? -> see lecture C. Hagner

Neutrino Mixing is large!

Important consequences e.g. for CP violation

SIDIES

Helmholtz-Alliance and Tier-2