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Elementary Particle Physics Research

Introduction to particle
physics for non-specialists

rather elementary
more details -> specialized lectures
particle physics in general
some emphasis on DESY-related topics

Achim Geiser, DESY Hamburg        
Summer Student Lecture,  29./30.7.08

thanks to B. Foster for some
of the nicest slides/animations
other sources: 
www pages of DESY and CERN

Scope of this lecture:
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What is Particle Physics?
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Classical view: particles = discrete objects.
energy concentrated into finite space with definite 
boundaries.
Particles exist at a specific location.
-> Newtonian mechanics

Modern view: 
particles = objects with discrete 
quantum numbers, e.g. charge, mass, ...
not necessarily located at a specific position.
(Heisenberg uncertainty principle)
can also be represented by wave functions
(Quantum mechanics, particle/wave duality)   

What is a „particle“?

Isaac
Newton

Werner 
Heisenberg

Erwin 
Schrödinger

Niels
Bohr

Louis 
de Broglie

(Nobel 1922)

(Nobel 1933)(Nobel 1929) (Nobel 1932)
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What is „elementary“?
Greek: atomos = smallest indivisible part

Dmitry
Ivanowitsch
Mendeleyev

1868
(elements)

Ernest
Rutherford
1911
(nucleus)

Murray
Gell-Mann

1962
(quarks)

(Nobel 1969)

(Nobel 1908)
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History of basic building blocks of matter
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Which Interactions?
Three
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The Forces in Nature

at ~ 1 GeV
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The Power of Conservation Laws

e.g. radioactive neutron decay:

n         p + e-+ νe

Pauli 1930:

not visible

Wolfgang
Pauli
(Nobel 1945)
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confirmation: neutrino detection

e.g. reversed reaction:

νe+ n        p + e
extremely rare!

(absorption length ~ 3 light years Pb)

first detection:  1956 (!)
Reines and Cowan, neutrinos from nuclear reactor

Frederick Reines
(Nobel 1995)
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The power of symmetries: Parity

Will physical processes look the
same when viewed through a mirror?

In everyday day life: 
violation of parity symmetry is common

„natural“: our heart is on the left
„spontaneous“: cars drive on the right 

(on the continent)
What about basic interactions?
Electromagnetic and strong interactions conserve parity!

Eugene
Wigner

(Nobel 1963)
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The power of symmetries: Parity

Lee & Yang 1956: weak interactions violate Parity
experimentally verified by Wu et al. 1957:

spin

consequence:

neutrinos are
always
lefthanded !
(antineutrinos righthanded)

Chen 
Ning
Yang

Tsung
-Dao 
Lee

Chieng
Shiung
Wu

(Nobel 
1957)
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The Power of Quantum Numbers

1948: discovery of muon
same quantum numbers as 
electron, except mass

muon decay:  µ- -> νµ e- νe
conservation of

electric charge -1            0      -1      0
lepton number:            1            1        1      -1      ν = ν (1955)

„muon number“:           1            1        0      0      νµ = νe (1962)

There is a distinct neutrino for each charged lepton

Who ordered THAT ?

I.I. Rabi
(Nobel 1944)

Leon M.        Melvin        Jack
Ledermann Schwartz   Steinberger

(Nobel 1988)
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The Power of Precision
Precision measurements of shape and height of Z0 resonance at LEP I

(CERN 1990’s)

e+e- -> Z0

number of 
(light) neutrino 
flavours = 3 Gerardus Martinus

t’Hooft Veltman
(Nobel 1999)

ν

ν

ν
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Can we “see” particles?

we can!

bubble 
chamber 
photo

Luis Walter Alvarez (Nobel 1968)

Donald Arthur Glaser (Nobel 1960)
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A generic modern particle detector
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Why do we need colliders?

early discoveries  in 
cosmic rays, but
need controlled
conditions

need high energy 
to discover new 
heavy particles

colliders =
microscopes (later)

LEP/LHC

CERN

Mont Blanc

2c
Em =
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The HERA ep Collider and Experiments
Data taking stopped summer 2007.   Data analysis ongoing.   Visits this Thursday/Friday.
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Particle Physics = People
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strong force in nuclear interactions
= „exchange of massive pions“ between nucleons
= residual Van der Waals-like interaction

Strong Interactions: Quarks and Colour

modern view: 
(Quantum Chromo-Dynamics, QCD)

exchange of massless gluons
between quark
constituents

„similar“ to electromagnetism
(Quantum Electro-Dynamics, QED)

p

π

n
(Nobel 1949)
Hideki Yukawa
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The Quark Model (1964)

ud

s

S=0

S=-1

Q=2/3Q=-1/3

arrange quarks (known at that time) into flavour-triplett
=> SU(3)flavour symmetry

treat all known hadrons 
(protons, neutrons, pions, ...)
as objects composed of 
two or three such 
quarks (antiquarks)

Murray
Gell-Mann

(Nobel 1969)
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The Quark Model

baryons = qqq mesons = qq
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Colour

Quark model very successful, but seems to violate
quantum numbers (Fermi statistics), e.g.

=> introduce new degree of freedom: 

3 coulours -> SU(3)colour            qqq = qq = white!

q

q q

q g

g g
q

q

g

gg

gg

uuu++∆ = ↑↑↑
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Screening of Electric Charge

electric charge polarises
vacuum -> virtual electron
positron pairs

positrons partially screen
electron charge

effective charge/force 
decreases at large 
distances/low energy
(screening) 
increases at small
distance/large energy

Sin-Itoro Julian        Richard P.
Tomonaga Schwinger Feynman 

(Nobel 1965)
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Anti-Screening of Coulour Charge!

quark-antiquark pairs -> screening
gluons carry colour -> gg pairs -> anti-screening!

1/r2~E2,

asymptotic
freedomco

nf
in

em
en

t
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Comparison QED / QCD
electromagnetism                strong interactions

The underlying theories are formally almost 
identical! 

QED QCD
1 kind of charge (q) 3 kinds of charge (r,g,b)
force mediated by photons force mediated by gluons
photons are neutral gluons are charged (eg. rg, bb, gb)
α is nearly constant αs strongly depends on distance

confinement limit:
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The effective potential for qq interactions

asymptotic freedom

confinement
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Heavy Quark Spectroscopy

Positronium = bound e+e- system

Charmonium = bound system 
of cc quark pair

1974

Burton
Richter

Samuel
C.C.
Ting

(Nobel 
1976)
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How to detect Quarks and Gluons?

cms energy 30 GeV. 
Lines of crosses - reconstructed 
trajectories in drift chambers (gas 
ionisation detectors).
Photons - dotted lines - detected by 
lead-glass Cerenkov counters.
Two opposite jets.

hadrons

e+ e-

q

q

hadrons

Example of the hadron
production in e+e-

annihilation in the JADE 
detector at the PETRA 
e+e- collider at DESY, 
Germany.

Jets!

Georges
Charpak

(Nobel 1992)
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PETRA at DESY:   look for

Discovery of the Gluon (1979)

Günter Wolf                             Sau Lan Wu

Björn Wiik Paul Söding

TASSO event picture
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Jets in ep interactions (HERA)
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Running coupling αs from jet production

HERA

(E,Q ~ 1/r)
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Running coupling αs from other measurements

(HERA)
(LEP, PETRA)

HERA =
currently
best 
place 
to study 
QCD!
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How to determine the „size“ of a particle?

microscope:
low resolution
-> small instrument

high resolution
-> large instrument

resolution ~ 10-18 m  = 1/1000 of size of a proton
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How to resolve the structure of an object?

e.g. X-rays 
(Hasylab, 

FLASH)
E~ keV

-> structure of 
a biomolecule

accelerator

probe

scattering image
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Resolve the structure of the proton

E ~ MeV
resolve whole proton

static quark model,
valence quarks
(m ~ 350 MeV)

E ~ mp ~ 1 GeV
resolve valence quarks 
and their motion

E >> 1 GeV
resolve quark and gluon 
“sea”

Jerome I.
Friedmann

Henry W.
Kendall

Richard E.
Taylor

(Nobel 1990)
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At higher and higher
resolutions, the quarks
emit gluons, which also 
emit gluons, which emit 
quarks, which…….

Heisenberg’s  UP
allows gluons, and qq
pairs to be produced 
for a very short time.

Low Q2 (large λ)
Medium Q2 (medium λ)

Large Q2 (short λ)

At highest Q2, λ ~ 1/Q ~ 10-18 m

Inside the proton
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e

q

e

p
p remnant

Deep Inelastic ep Scattering at HERA
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Deep Inelastic Scattering (DIS)
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The Proton Structure

structure functions quark and gluon densities
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Kinematic regions: HERA vs. LHC
proton structure
measured directly
for large part of 
LHC phase space

QCD evolution
successful

-> safely extrapolate
to high Q2 or low x

HERA

LHC Tevatron

fixed
target
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Example: Higgs cross section at LHC
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Intermediate summary

Particle physics: Symmetries and 
conservation laws are important
many exciting results at DESY and 
elsewhere!   e.g. quarks, gluons, protons
HERA closed down, but particle physics 
at DESY continues
tomorrow: weak interactions, Higgs,

(neutrinos), cosmology, 
future of particle physics
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The Theory of GLASHOW, SALAM and WEINBERG              

Theory of the unified weak and electromagnetic interaction,
transmitted by exchange of “intermediate vector bosons”

Weak Interactions
~ 1959-1968

(Nobel 1979)
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To produce the heavy W and Z bosons (m ~ 80-90 GeV)
need high energy collider!
1978-80: conversion of SPS proton accelerator at CERN 
into proton-antiproton collider
challenge: make antiproton beam!

success! 
-> first W and Z produced 

1982/83

Discovery of the W and Z (1983)

Z0 -> e+e- UA1

Carlo
Rubbia

Simon
van der
Meer

(Nobel 1984)
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only ν exchange
No ZWW vertex

Three Boson Coupling @ LEP

W/Z bosons carry electroweak charge (like gluons)
-> measure rate of W pair production at LEP II
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Electroweak Physics at HERA
Neutral Current (NC) interactions

Charged Current (CC) interactions

e

e



29.7.08 A. Geiser, Particle Physics 49

Weak interactions are "left-handed"
lefthanded electrons interact (CC)

e-

righthanded electrons do not!

e-

cross section linearly proportional 
to polarization

polarization
pePpe

unpolCCepolCC

±±
⋅±= σσ )1(

Polarized CC Cross Sections

e-

e+

left
right
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Electroweak Unification

NC

CC

MW
2
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The Quest for Unification of Forces

electric

magnetic

gravity
weak

strong

Maxwell’s
equations

Grand Unified Theories ?

Superstring Theories ?

Electroweak Unification

Big Bang
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αs from HERA and Grand Unification

world average: αS(MZ) = 0.1176 ± 0.0020
NNLO, MSbar PDG 2006

HERA prel.: 
αS(MZ) = 0.1198 ± 0.0019(exp) ± 0.0026(th)

with SUSY (see later):
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relativistic Schrödinger equation
(Dirac equation) 
two solutions: 
one with positive, one with negative energy
Dirac: interpret negative solution as

1932 antielectrons (positrons) found in conversion of 
energy into matter

1995 antihydrogen consisting of antiprotons and 
positrons produced at CERN

In principle: antiworld can be built from antimatter
In practice: produced only in accelerators and 
in cosmic rays

Antimatter

P.A.M.
Dirac

(Nobel 1933)
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−+ +→ eeγ

Pair Production

e.g.

when radiation
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hfee 2 →+ −+

Annihilation

radiation
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As far as we can see in universe, no large-scale antimatter.
-> need CP violation!

Why does the Universe look like
this not that?

The Matter Antimatter Puzzle



29.7.08 A. Geiser, Particle Physics 57

-> particles, anti-particles and 
photons in thermal equilibrium 
– colliding, annihilating, being re-created etc. 

Slight difference in fundamental interactions between 
matter and antimatter (“CP violation”) ?
-> matter slightly more likely to survive

Ratio of baryons (e.g. p, n) to 
photons today tells us about this 
asymmetry - it is about 1:109

The Matter Antimatter Puzzle



29.7.08 A. Geiser, Particle Physics 58

Parity
(reflection)

Charge 
Conjugation

(black → 
white)

Like weak interaction, symmetric under CP (at first sight!)
Can there be small deviations from this symmetry? 

CP symmetry

C

P
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Simply count decays as 
function of t!

+e −e

t2

Decay length 
~ 1/4 mm

Second B 
decays (B0)

t1

First B 
decays

K0
s

d s
J/ψ

cc

(or )bd B 0
d B 0

d

( ) =tAsymmetry B0

B0
B0

B0
-
+

CP violation in B meson decays
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Example: recent measurement from BaBar at SLAC

B and anti-B 
are indeed
different

(also found
earlier for
K decays: )

CP violation in B meson decays

(also Belle 
at KEK)

(Nobel 1980)James Watson Cronin

Val 
Logsdon 
Fitch

data taking stopped.     Belle/Super-Belle continuing.
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CP violation measured so far not strong enough to 
explain matter-antimatter asymmetry
way out: CP violation in neutrino oscillations (see C. Hagner)
and/or strong lepton number asymmetry in early
universe (see A. Lindner).

Standard Model predicts baryon and 
lepton number violation through
so-called „sphaleron“ process:
converts 3 leptons into 3 baryons!
rare process at very high energy -> not observable so far 
related process: QCD „instantons“
in principle observable at HERA!
still searching ...

contribution to the antimatter puzzle from HERA?

I

u
u d

d
s

s

c

c

b
b

Sphaleron

Instanton
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e
electron

νe
e-neutrino

d
down

up
u

..

νµ
µ-neutrino

µ
muon

c
charm

strange
s

b
bottom

t
top

τ
tau

ντ
τ-neutrino

..

..

The Mystery of Mass
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Fermion Mass from Higgs field? 

room = vacuum 
people = Higgs vacuum expectation value

very brilliant scientist (fermion)
works with speed of light!
-> “massless”
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Fermion Mass from Higgs field?
scientist becomes famous!
enters room with people
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Fermion Mass from Higgs field?

people cluster around him
hamper his movement/working speed
-> he becomes “massive”! 
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How much do Neutrinos weigh?

Standard Model has mν = 0

-> evidence for mν = 0
forces 

see lectures C. Hagner! (last week)

from the lightest ...
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The quest for the top quark

Electroweak precision measurements at LEP/CERN
sensitive to top quark mass and Higgs mass (indirect effects)

-> Mt ~ 170 GeV

... to the heaviest
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The Tevatron (Fermilab)
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Top quark discovery (Fermilab 1995)

Top quark actually found
where expected!

Tevatron at Fermilab
(CDF + D0) 

recent mass value:
(EPS07)

2
top GeV/c 8,19.170M ±=
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Precision @ LEP and Higgs

mH < 182 GeV at 95% CL

insert measured top mass into 
precision measurements at LEP
-> now sensitive to Higgs mass
(last undetected particle of
Standard Model!)

current direct lower limit: 

mH > 114 GeV at 95% CL
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The LHC Project
scheduled startup: October 2008 !
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The DESY CMS group
Installation & Commissioning
Computing
High Level Trigger
Beam Condition Monitor
Forward detectors (CASTOR)
Data Quality Monitoring
Physics

Standard Model
Forward Physics
Top + Higgs

CMS remote center at DESY
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The DESY ATLAS group

High level trigger
Computing
Lumi monitor (ALFA)
sLHC upgrade
Physics:

Standard Model
Top quarks
Supersymmetry
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KanzleramtKanzleramt
PaulPaul--LoebeLoebe--HausHaus

LL
HH
CC

U55

ReichstagReichstag

LHC startup exhibition
for the general public
Berlin, U-Bahnhof Bundestag,
15.10-16.11. 2008
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The Quest for the Higgs at LHC

LEP

depending on mass,
Higgs might be found 
within first year of
LHC physics operation!

Higgs production:

Higgs decay:
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Supersymmetry

A way to solve theoretical problems with 
Unification of Forces: Supersymmetry
For each existing particle, introduce similar 
particle, with spin different by 1/2 unit
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Supersymmetry

double number of particles:

not seen at LEP, HERA, Tevatron ... -> must be heavy!
hope to see them at LHC !
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Unification and Superstrings

To include gravity in unification of forces,
need Superstrings (Supersymmetric strings)
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Superstring interaction
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Extra Dimensions?
Superstrings require more than 3+1 dimensions
additional “extra” dimensions -> “curled up”  
- could be as large as a mm!

potentially measurable 
effects,  even at HERA!
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Large extra dimensions: virtual graviton exchange

Virtual graviton exchange in 
t-channel interferes with Deep
Inelastic Scattering (DIS)

Exchange of Kaluza-Klein tower
(KK) affects Q2 distribution at
high Q2 

Compare dσ/dQ2 to what is
expected from SM

Q2 = (k-k’)2 ,KK

KKe
e

jet
p
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Large extra dimensions: virtual graviton exchange

λ = - 1 : MS > 0.79 TeV

λ= + 1 : MS > 0.78 TeV

16319e- p
112301/319e+ p
Lint(pb-1)s1/2(GeV)Zeus

dσ/dQ2 used in binned
likelihood 
=> 95% CL limits on 

MS (TeV)

continue search at LHC !
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The case for an e+e- Linear Collider

Historically, hadron (proton) and electron colliders
have yielded great symbiosis:

hadron colliders: 
discoveries at highest 
energies
electron colliders: 
discoveries and 
precision measurements
latest example: 
Tevatron/LEP (top)

=> International Linear Collider!

for more see lectures K. Buesser

5
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Example: Higgs Physics at the ILC

e–

e+
Ζ

Ζ

H

e–

e+
Ζ

Ζ

H
H

H

f

f

t

t
e–

e+
Ζ

H

Top-Yukawa couplingTop-Yukawa coupling

Yukawa couplingsYukawa couplings

Gauge couplingsGauge couplings
Self couplingSelf coupling

H

e– ν

e+ ν

W
W

all measurable with high precision!
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Cosmology

increasing energy
-> going further 

backwards in time 
in the universe

->  getting closer to 
the Big Bang
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LHC/ILC
HERA/LEP10 -35 s

Inflation ceases, expansion
continues. Grand Unification
breaks. Strong and
electroweak forces become
distinguishable

Grand 
unification 
era

Grand 
unification 
era

Electroweak 
era
Electroweak 
era

10-10  s

Electroweak force splits

Protons and 
neutrons form

Quarks combine to make
protons and neutrons 

Protons and 
neutrons form

Quarks combine to make
protons and neutrons 

10-4 s
Nuclei are 
formed
Nuclei are 
formed

Protons and neutrons
combine to form helium
nuclei

100 s

300000 years

Atoms and 
light era
Atoms and 
light era

The Universe becomes   
transparent and fills with
light

300000 years

Hasylab,
XFEL

Galaxy 
formation
Galaxy 
formation

1000 M years
Galaxies begin to form

You!
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Elementary Particle Physics is exciting!

I am still confused,

but now I am confused
at a much higher level!

We already know a lot, but many open issues

Exciting new insights expected for the 
coming decade!
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Backup Slides
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Why ILC?

If LHC finds Higgs
ILC will study its detailed properties

If LHC does not find Higgs
-> Problem with Standard Model, only ILC can  

study why (precision measurements)
If LHC finds SUperSYmmetery

ILC will study SUSY particles, and potentially
find/distentangle many more

If LHC does not find SUperSYmmetry
ILC might provide indirect evidence (precision
measurements)

+ potential unexpected discoveries ...
Compositeness, Large Extra Dimensions,
indirect effects from Superstrings, ...
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How much do Neutrinos weigh?

nothing ? or almost nothing?

Standard Model has mν = 0

-> evidence for mν = 0     
forces 
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Neutrinos in Cosmology

artist‘s view of the Big Bang

~400 ν’s / cm3 !                  dark matter??
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Neutrinos from the Sun

~7 x 1010 ν’s / cm2 s
measure ~ half predicted!?

The sun in neutrino “light”
(Super-Kamiokande)

Raymond
Davis Jr

Masatoshi
Koshiba

(Nobel 2002)
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Neutrinos from Cosmic Rays

Super
Kamio-
kande ν rate

from
below
only
~half of 
above ??

(atmospheric neutrinos)
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Pν e →νµ
= sin 2 2θ ⋅sin 2 1.27 ⋅ L(m) ⋅ ∆m 2 (eV 2 )

Eν (MeV)

⎛ 

⎝ 
⎜ 

⎞

⎠

Solution: Neutrino Oscillations

ν e

ν µ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

  cosθ   sinθ
−sinθ   cosθ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   

ν1

ν 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ν e (t) = cosθ ⋅ exp(−iE1t) ν1 + sinθ ⋅ exp(−iE2t) ν 2       

simplified case: two neutrino flavours, simple quantum mechanics

flavour mass
eigenstates eigenstates

time evolution:

if m1 = m2 ->  E1 = E2 -> average ~ 50%
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Solution for “Solar” Neutrinos

SNO,
Solar Neutrino 
Observatory

KamLand,
Reactor Neutrino 
Experiment

sin2θ12

10-5

10-4

∆m
2

2
1

[e
V

2
]

νe → νx
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Solution for “Atmospheric” Neutrinos

νµ → νx

MINOS/Fermilab
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Conclusions for Neutrinos

Neutrino oscillations established
-> 

->

How?   -> see lecture C. Hagner

Important consequences e.g. for CP violation 
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Helmholtz-Alliance and Tier-2


