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1. Introduction

central questions in particle physics

elementary constituents of matter fundamental forces

present status

STANDARD MODEL

quarks and leptons gauge forces as a consequence of the

gauge principle=

symmetrie requirement
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Elementary particles of the Standard Model

spin 1/2 matter particles, in three generations
electric charge

leptons (l)

(
νe
e

) (
νµ
µ

) (
ντ
τ

) (
0
−1

)

quarks (q)

(
u
d

) (
c
s

) (
t
b

) (
2
3
−1

3

)

spin 1 gauge bosons (mediators of the fundamental interactions)

photon (γ)

gluons (g)

W±, Z bosons

• no free quarks and gluons

• confinement’ in hadrons

• indirect evidence

spin 0

Higgs boson (H) ?
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Fundamental forces = gauge forces

interaction theory
participating

matter particles
mediator examples

electro-
magnetic

QED
electrically charged

l,q
photon (γ)

e+e− → e+e−e+e−

e+e− → µ+µ−

π0 → γγ

weak
unified

electroweak
gauge theory

all l, q (in pairs) W±, Z, γ

→ decay of nuclei
n→ p e ν̄e
µ→ νµ e ν̄e
K0 → π+π−

e+e− → Z

strong
resp.
colour

QCD coloured q gluons

→ nuclear forces
ρ→ π+π−

in e±p → e±+ any-

thing

in e+ + e− → three

jets
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Plan of the lecture

2. quantum field theory (QFT) why? how formulated?

3. gauge interactions

• all interactions







electromagnetic (QED)

weak

strong (QCD)

gained from a simple, elegant principle, the

so-called

gauge principle in form of gauge interactions

• – perturbation theory (for small couplings) → Feynman diagrams

– (lattice physics for large couplings)

• the Higgs boson, spontaneous symmetry breakdown and masses for W±, Z, l, q
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4. quantum effects, some applications and key precision tests

• quantum effects and precision tests in QED

• running couplings in QED and QCD →

qualitative understanding of
quark confinement
at large distances

asymptotic freedom
of quarks
at small distances

• test of asymptotic freedom and of three colours

• HERA: deep inelastic scattering and the nucleon structure functions

as test of perturbative QCD

• quantum effects in electroweak interactions and the indirect determination of

mt and mH at LEP, SLD
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5. physics beyond the Standard Model

• some open questions in the Standard Model

• brief remark on neutrino masses

• composite quarks and leptons

• new particles, examples: leptoquarks and leptogluons

• new gauge interactions

• grand unification

• supersymmetry

• brief remarks on

supergravity, superstrings, baryon asymmetry, cosmology, extra dimensions, non-
commutative geometry
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2. Quantum field theory

♣ QFT - why?

non-relativistic quantum mechanics ∆x→ uncertainty principle ∆x ·∆p>∼O(h̄)

∆x

→→ ∆p → implying p → implying v →c (c = speed of light)

relativistic
quantum
mechanics is
insufficient

special relativity

– E =
√

~p 2c2 +m2c4 with Erest = mc2

– conservation of energy E

– kinetic energy
transformation←→ mass

– no conservation of particle number and particle species

quantum field theory allows description of particle production and annihilation
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♣ QFT - formulation

step 1 each particle species
association←→ field Φ(t, ~x)

role model: electric and magnetic fields ~E(t, ~x), ~B(t, ~x) x

B(t,x)

N S

classical mechanics classical field theory

1 mass point (in 1 dim.), described by 1
generalized coordinate

1 field, described by 1 generalized coordi-
nate in each space point ~x

q(t),
.
q (t) Φ(t,~x),

.

Φ (t,~x), ~∇Φ(t,~x)

Lagrangefunction L = T − V (potential V contains interaction)

L(q(t),
.
q (t)) L =

∫
d3x

L(Φ(t, ~x),
.

Φ (t, ~x), ~∇Φ(t, ~x))
︸ ︷︷ ︸

Lagrange density

action S =
∫

dtL, Hamilton principle of extremal action δS = 0 →
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equation of motion field equation

∂L

∂q
− d

dt

∂L

∂
.
q

= 0
∂L
∂Φ
− ∂

∂t

∂L
∂

.

Φ
+ ~∇ ∂L

∂(~∇φ)
= 0

step 2
establish L for each of the fundamental interactions
among the relevant fields (see sect.3)

For free fields, i.e. no interaction:

spin 0: Φ(t, ~x) field equation = Klein-Gordon equation

= relativistic generalization of the Schrődinger equation

(E2 − c2~p 2 −m2c4 = 0; E → ih̄ ∂∂t, ~p→ −ih̄~∇)

h̄ = c = 1 (2 +m2)Φ(t, ~x) = 0 with 2 = ( ∂∂t)
2 − ~∇2

→ LΦ
free = 1

2((
∂
∂tΦ)2 − (~∇Φ)2)− 1

2m
2Φ2
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spin 1
2: ψ(t, ~x) field equation = Dirac equation

with ∂µ =

( ∂
∂t
~∇

)

, µ=0,1,2,3

ψ =4-spinor= (ψ1, ψ2, ψ3, ψ4),

γµ=4×4-matrices

(iγµ∂µ −m)ψ(t, ~x) = 0 → Lψfree = ψ̄(iγµ∂µ −m)ψ

spin 1, m=0: Aµ(t, ~x) µ = 0, 1, 2, 3 electromagnetic field

Aµ(t, ~x) =

(
V (t, ~x) = scalar potential
~A(t, ~x) = vector potential

)

~B = ~∇× ~A, ~E = −~∇V − ∂
~A

∂t

electromagnetic field strength tensor with components in terms of ~E and ~B

Fµν(t, ~x) = ∂µAν(t, ~x)− ∂νAµ(t, ~x) with ∂µ =

(
∂
∂t
~∇

)

field equations = Maxwell equations (in absence of charge and current densities)

∂µF
µν(t, ~x) = 0 → LAµfree = −1

4FµνF
µν

11



step 3 field quantization

quantum mechanics quantum field theory

conjugate coordinate spin 0: Φ(t, ~x) conjugate field

p(t) :=
∂L

∂
.
q (t)

π(t,~x) :=
∂L

∂
.

Φ (t,~x)

[
q(t),p(t)

]
= ih̄

[

Φ(t,~x), π(t,~x′)
]

= ih̄δ(3)(~x− ~x′)
scalar boson field quantization

[A,B] = A ·B − B · A

spin 1/2: πα(t,~x) :=
∂L

∂
.

ψα (t,~x)
ψ(t, ~x): ψα(t, ~x), α = 1, ..., 4

{A,B} = A ·B +B · A

{

ψα(t,~x), πβ(t,~x
′)

}

= δαβ ih̄δ
(3)(~x− ~x′)

Dirac fermion field quantization

q, p→ operators Φ, π resp. ψα, πα → field operators
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quantum mechanics quantum field theory

spin 1, m=0: Aµ(t, ~x) µ = 0, 1, 2, 3

πµ(t,~x) :=
∂L

∂
.

Aµ (t,~x)

[

Aµ(t,~x), πν(t,~x′)
]

= gµν ih̄δ(3)(~x− ~x′)
electromagnetic field quantization

(modulo complications due to gauge invariance)

gµν=metric tensor

Aµ, πµ → field operators
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♣ QFT for a free scalar field and particle interpretation

• field equation (2 +m2)Φ(t, ~x) = 0, with 2 = ( ∂∂t)
2 − ~∇2

general solution

Φ(t, ~x) ∝
∫

dE d3p δ(E2 − ~p 2 −m2) × (a(E, ~p) e−i(Et−~p~x) + a†(E, ~p) e+i(Et−~p~x))

energy 3-momentum relativistic energy-momentum relation

• Lagrange density LΦ
free = 1

2((
∂
∂tΦ)2 − (~∇Φ)2)− 1

2m
2Φ2

conjugate field π(t, ~x) :=
∂L

∂
.

Φ (t, ~x)
=

.

Φ (t, ~x)

• field quantization
[

Φ(t, ~x), π(t, ~x′)
]

= ih̄ δ(3)(~x − ~x′) ←→

[a(p),a†(p′)] = 2E h̄ δ(3)(~p− ~p ′), [a(p), a(p′)] = 0, [a†(p), a†(p′)] = 0 with p =

(
E
~p

)

a(p) = a(E, ~p) is field operator, a†(p) is the hermitian conjugate field operator
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• Hamiltonoperator (measures total energy in the field)

H =
∫

d3x(π
.

Φ −L) = ... +
∫

dE d3p δ(E2 − ~p 2 −m2)E a†(p)a(p)
︸ ︷︷ ︸

number operator N(p)

• eigenbasis of N(p) (Fock space of multiparticle states)

N(p) |n(p)> = n(p) |n(p)>

n(p) = number of particles with spin 0, mass m with

energy between E and E + dE and momentum between

~p and ~p+ d~p, E = +
√

~p 2 +m2

eigenvalue eigenstate

N(p)a(p)(†) |n(p)> = (n(p)
−

(+) 1)a(p)(†) |n(p)> ←→

a†(p) |n(p)> ∝ |(n+1)(p)> a†(p) = particle creation operator

a(p) |n(p)> ∝ |(n−1)(p)> a(p) = particle annihilation operator

provides basis for

particle production

and particle anni-

hilation in QFT

Normalize the energy of the ground state |0 > to zero → eigenvalue spectrum n(p) = 0, 1, 2, ...

consequence of the field quantization! field ←→ particle
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• multiparticle states Bose-Einstein statistics

|n1(p1), ..., nm(pm)> ∝ (a†(p1))
n1 · ... · (a†(pm))nm|0>

automatically: total symmetry with respect to the exchange of any two particles

♣ QFT for a free Dirac field

• [, ]→ {, } for a Dirac fermion field the arguments runs analogously, also leading to particle creation

and annihilation operators. Due to the anticommutator ({a†(p), a†(p′)} = 0, implying (a†(p))2 = 0)

the multiparticle states obey

Fermi-Dirac statistics resp. the Pauli principle

|p1, ..., pm> ∝ a†(p1) · ... · a†(pm)|0> (for simplicity the spin degrees of freedom have been suppressed)

automatically: total antisymmetry with respect to the exchange of any two particles

• existence of antiparticles in QFT

• the field energy is bounded from below
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3. Local gauge interactions

♣ preexercise in symmetries by means of examples from daily life

snowflake

• invariance with respect to common, i.e. global rotations by 60o

• section can be chosen by convention
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throwing a stone into the water

• invariance with respect to common, i.e. global rotations of all points by an arbitrary
angle

• the line can be chosen by convention
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balloon

Page 1 Page 1

• invariance with respect to common, i.e. global rotations of all points of the surface by
an arbitrary angle around the given axis

• longitudinal circle can be chosen by convention
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requirement of local symmetry

Page 1 Page 1

Page 1

• the balloon is required to keep its form, if each point of the surface is allowed to be
rotated by an arbitrary angle - independently of the other points - i.e. if the surface
remains invariant with respect to local rotations

• angular convention can be chosen arbitrarily for each point of the surface

the local symmetry is only possible
in the presence of forces
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’derivation’ of quantum electrodynamics

(QED) from the gauge principle

♣ history electromagnetic interactions (Maxwell equations, QED) have a local gauge invariance → ge-

neralizeable→ put on the level of a principle→ access to the understanding of strong and weak interactions

♣ starting point free matter particle e.g. electron (with electric charge Qψ = −1),

described by the Dirac equation (i ∂∂tγ
0 − i~∇~γ −m)ψ(t, ~x) = 0

♣ global symmetry the absolute phase of the field ψ(t, ~x) is not measurable

invariance with respect to global phase transformations

ψ(t, ~x) → eiα ψ(t, ~x),

where α is an arbitrary constant.

The absolute phase can be

fixed by convention. Ho-

wever, the convention has

to be identical at all times

and at all space points.
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♣ requirement of local symmetry (conceptual analogy to general relativity)

GAUGE PRINCIPLE

- invariance with respect to local phase transformations

ψ(t, ~x) → eiα(t,~x) ψ(t, ~x),

where α is an arbitrary function of t, ~x.

- The phase convention can be chosen arbitrarily at each time and at each space
point without effect on observables

♣ symmetry group the transformations ψ(t, ~x)→ eiα(t,~x)ψ(t, ~x)

build a group of unitary transformations: U(1)em

♣ The requirement of local symmetry is not fulfilled for the free electron, since

(
∂/∂t
~∇

)
(
ei α(t,~x)ψ(t, ~x)

)
= ei α(t,~x)

(
∂/∂t
~∇

)

ψ(t, ~x) + iei α(t,~x)ψ(t, ~x)

(
∂/∂t
~∇

)

α(t, ~x)
︸ ︷︷ ︸

additional term
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♣ Force as a consequence of the gauge principle

in order to implement the local gauge invariance, the four additional terms require the introduction of four

fields and , the so-called gauge fields with spin 1, mass 0 and their interaction
(
∂/∂t
~∇

)

︸ ︷︷ ︸

→
(
∂/∂t
~∇

)

︸ ︷︷ ︸

+i e
(

V (t, ~x)

− ~A(t, ~x)

)

︸ ︷︷ ︸

=: Dµ

∂µ ∂µ Aµ(t, ~x)
covariant

derivative

local gauge invariance with respect to the simultaneous local gauge transformations

ψ(t, ~x) → eiα(t,~x) ψ(t, ~x)
(

V (t, ~x)

− ~A(t, ~x)

)

︸ ︷︷ ︸

→
(

V (t, ~x)

− ~A(t, ~x)

)

︸ ︷︷ ︸

−1

e

(
∂/∂t
~∇

)

︸ ︷︷ ︸

α(t, ~x)

Aµ Aµ ∂µ

(∂µ + ieAµ)ψ →
(
∂µ + ie(Aµ − 1

e ∂µα)
)
(eiαψ) = ∂µ(e

iαψ) + ie(Aµ − 1
e ∂µα)(eiαψ) =

eiα∂µψ+i(∂µα)eiαψ − i(∂µα)eiαψ + ieeiαAµψ = eiα (∂µ + ieAµ)ψ

♣ gauge field=electromagnetic field
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♣ results: field equations and Lagrange density of QED

– Dirac equation field equation for electron field ψ(t, ~x)

(iγµ∂µ −m)ψ(t, ~x) = eγµAµ(t, ~x)ψ(t, ~x)

interaction term

– Maxwell equation field equation for the gauge field = electromagnetic field Aµ(t, ~x)

∂µF
µν(t, ~x) = e ψ̄(t, ~x)γνψ(t, ~x) =

(
ρ(t, ~x)
~j(t, ~x)

)

interaction term charge density ρ, current density~j

– Lagrange density LQED = Lψfree+L
Aµ
free−eψ̄(t, ~x)γµψ(t, ~x)Aµ(t, ~x) local interaction

♣

formulation of QED

– LQED = Lfree + e
∑

ψ

Qψψ̄(t, ~x)γ
µ
ψ(t, ~x)Aµ(t, ~x)

︸ ︷︷ ︸

Lint for all matter fields ψ with electric charges Qψ

– satisfying local gauge invariance w.r. to ψ → e−iQψα(t,~x)ψ for all ψ, Aµ → Aµ− 1
e∂µα(t, ~x)

– quantization of the fields ψ and Aµ
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♣ coupling The gauge principle fixes the form of the electromagnetic interaction completely except for

a constant e , the electromagnetic coupling constant, which is a measure for the interaction strength

and is related to the

fine structure constant
αem = e2/(4π) experimentally ≈ 1/137� 1

♣ multiparticle states matterfields ψ → multi-ψ and multi-ψ̄ states, for ψ = e, µ, τ, quarks

electromagnetic field Aµ → multi-photon states

♣ formal solution of QED scattering operator S, acting in the space of multi-ψ, multi-ψ̄

and multi-photon states
| t = +∞ > = S | t = −∞ >

scattering operator

S = T

[

1 + i

∫

dt d3xLint

︸ ︷︷ ︸

+
i2

2

(∫

dt d3xLint

)2

︸ ︷︷ ︸

+...

]

↑
time ordering ∝ e ∝ e2

♣ perturbation theory cutting the series off after an appropriate number of terms
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♣ Feynman diagrams

the transition probability for any QED reaction between electrically charged

l, q, l̄, q̄ and/or photons can be calculated in perturbation theory. The

contributions may be represented by Feynman diagrams with the basic building

blocks (only electrons (e−), positrons (e+) and photons (γ) are considered)

– e± propagator
– photon propagator
– interaction vertex from Lint

time t

-+e
-+e

γ

-+e
-+e

γ

emission of a photon absorption of a photon

e+

e-

γ

e+

e-

γ

pair annihilation pair production

the same vertex with different orientation of its legs with repect to the time arrow; e± → e∓ if a line changes its direction

with respect to the time arrow.
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♣ examples

– e+e− → e+e− e+

e-

e+ e+

e- e-

e+

e-

γ
+ γ O(αem)

+

e+

e-

e+

e-

+

e-

e+

γ γ
... O(α2

em)

+

e+

e-

e+

e-

+

e+

e-

γ γ
...

γ

O(α3
em)

– e+e− → µ+µ− to (αem) e+

e-

µ+

µ-

γ

27



’derivation’ of quantum chromodynamics

(QCD) from the gauge principle

♣ global symmetry in analogy to QED

electric charge color (charge)

quarks appear in three different colour charges qred, , qgreen, qblue

for each quark flavour q = u, d, c, s, t, b

starting point free particles

electrically charged particles coloured quarks

field ψ(t, ~x) fields ψred(t, ~x), ψgreen(t, ~x), ψblue(t, ~x)

global symmetry with respect to the global transformations, which leave invariant

ψ̄ψ ψ̄redψred + ψ̄greenψgreen +ψ̄blueψblue

ψ → e−iαQψ ψ ψi →
∑3

j=1Uij ψj i, j = red, green, blue

one real constant α 3× 3 complex, unitary, constant matrix U with UU † = U†U = 1
¯
, detU = 1
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♣ requirement of local symmetry

GAUGE PRINCIPLE

- invariance with respect to the local transformations

ψi →
∑3

j=1Uij(t, ~x)ψj

i, j = red, green, blue,

with arbitrary functions Uij(t, ~x) of t, ~x satisfying UU † = U †U = 1
¯
, detU = 1.

QED QCD

symmetry group

U(1)em SU(3)c group of special unitary transformations
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QED QCD

♣The requirement of local symmetry is not fulfilled for free particles → interactions
with

gauge fields resp. gauge particles

1 electromagnetic field (3× 3− 1) gluon fields

Aµ(t, ~x) =
(
V (t, ~x)
~A(t, ~x)

)

Gµ,A(t, ~x), A = 1, ..., 8

photon spin 1, mass 0 gluons spin 1, mass 0

photons are electrically
neutral

gluons carry colour: decisive difference

r r̄ r ḡ r b̄
g r̄ g ḡ g b̄
b r̄ b ḡ b b̄

’minus’ r r̄+g ḡ +b b̄

♣ Local gauge invariance fixes all interactions in LQCD in terms of a single unknown

coupling constant gc of QCD
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♣ Feynman diagrams

QED QCD

t

electron

positron

photon

electron

positron

photon

t

gluon gluon gluon gluon

gluongluon gluon

gluon gluon

quark

antiquark

quark

antiquark

All couplings are completely determined in terms

of a single unknown parameter, the QCD coupling

constant gc
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unified electroweak gauge theory from the gauge principle

♣ parity violation in weak interactions

experimentally weak interaction processes violate the invariance with respect to

space reflections ~x→ −~x

For each fermion ψ(t, ~x) = (ψL(t, ~x), ψR(t, ~x)) with ψL(t,~x) → ψR(t,−~x) and ψR(t, ~x) →
ψL(t,−~x). Thus parity violation is implemented into the theory by treating differently the left-handed

(ψL) and right-handed (ψR) components of the lepton and quark fields (see below). Since the handedness

is only Lorentz invariant for massless fermions this implies as a

♣ starting point: massless leptons and quarks

♣ global symmetries to be gauged later on

The global symmetry of the system of massless free quarks and leptons is large (symmetry group

U(12)L × U(12)R). In nature only an SU(2) × U(1) subgroup appears to be gauged; the following

selection leads to success
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• SU(2)L weak isospin symmetry group

the left-handed leptons and quarks are arranged in doublets
(
νe
e

)

L

,

(
νµ
µ

)

L

,

(
ντ
τ

)

L

,

(
u

d

)

L

,

(
c

s

)

L

,

(
t

b

)

L

each described by a doublet of fields

(
ψLu.c.(t, ~x)
ψLl.c.(t, ~x)

)
I3 = +1/2
I3 = −1/2

(u.c. for upper component, l.c. for lower component) with assigned quantum numbers I3. The two

quantum numbers I3 = ±1
2 play the role of generalized charges, in analogy to the three colours in QCD

invariance with respect to the global SU(2)L transformations which leave invariant

ψ̄Lu.c.ψ
L
u.c. + ψ̄Ll.c.ψ

L
l.c.: ψLi →

∑2
j=1 Uij ψ

L
j , i, j = u.c., l.c.

with UU† = U†U = 1
¯
, detU = 1 for the 2× 2 complex matrix U

Right-handed leptons and quarks

eR, µR, τR, uR, dR, cR, sR, tR, bR are assigned zero weak isospin, I3 = 0

(νeR, νµR, ντR do not exist in the SM)
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• U(1)Y hypercharge symmetry group

Each l.-h. lepton and quark doublet and each r.-h. lepton and quark is assigned a so-called
hypercharge quantum number Y with

Q = I3 + Y/2

where Q is the electric charge

invariance with respect to the global U(1)Y
transformations which leave ψ̄ψ invariant, i.e.

ψ(t, ~x)→ ei α Yψ ψ(t, ~x)

ψ Qψ I3ψ Yψ

(
νe
e

)

L

(
νµ
µ

)

L

(
ντ
τ

)

L

(
0

−1

) (
+1/2

−1/2

)

-1

(
u
d

)

L

(
c
s

)

L

(
t
b

)

L

(
2/3

−1/3

) (
+1/2

−1/2

)

1/3

eR, µR, τR -1 0 -2

uR, cR, tR 2/3 0 4/3

dR, sR, bR -1/3 0 -2/3
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– global SU(2)L × U(1)Y and U(1)em symmetries

Because of Q = I3 + Y/2, i.e. e−iαI3ψ e−iαYψ/2 = e−iαQψ

U(1)em is subgroup: SU(2)L × U(1)Y ⊃ U(1)em

♣ requirement of local symmetry

GAUGE PRINCIPLE

- invariance with respect to local SU(2)L × U(1)Y transformations →
unified electroweak gauge interactions ⊃ QED
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♣ 2 undetermined gauge couplings SU(2)L × U(1)Y ⊃ U(1)em

l l l
g g′ e → 1

e2
= 1

g2 + 1

g′2

with e = g sin θW = g′ cos θW , θW=Weinberg angle

2 parameters not fixed by the gauge principle
g, g′ ←→ e, sin θW

♣ gauge fields resp. gauge bosons SU(2)L × U(1)Y ⊃ U(1)em

l l l
︷ ︸︸ ︷

W 1,2,3
µ (t, ~x) Bµ(t, ~x) Aµ(t, ~x)

W±µ = 1√
2

(
W 1
µ ± iW 2

µ

)
(with electric charge ±1)

Aµ = sin θWW
3
µ + cos θWBµ = electromagnetic field

Zµ = cos θWW
3
µ−sin θWBµ = orthogonal field combination

gauge bosons W±, Z, γ

with spin 1, mass 0 (so far)
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♣ interaction vertices of the electroweak gauge theory

all couplings are determined in terms of the two parameters e, sin θW

u.c.
L

W+

ψ

Z ,γ
ψ

b)
ψ

Z ,γ
ψ

b)

ψ

W+

W-

Z, γ

W-

W+ V1

V2

ψl.c.
L

c) d)

a)

a)
(
ψLu.c.
ψ̄Ll.c.

)

=

(
νeL
e+
L

)

,

(
νµL
µ+
L

)

,

(
ντL
τ+
L

)

,

(
uL
d̄L

)

,

(
cL
s̄L

)

,

(
tL
b̄L

)

b) ψ = νe, νµ, ντ , e, µ, τ, u, d, c,

s, t, b; no coupling of ν ν̄ to γ

c) three gauge boson vertices

d) four gauge boson vertices

V1 V2 = W+W−, Z Z, Z γ, γ γ
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spontaneous symmetry breakdown

♣ aim masses

– for the gauge bosons W±, Z (experimentally mW ≈ 80 GeV, mZ ≈ 91 GeV)

– for the quarks and charged leptons

without explicitly breaking the local SU2L × U(1)Y gauge symmetry
(’explicit’→ on the level of the forces, i.e. of the Lagrange density)

♣ characteristics of spontaneous symmetry breakdown [SSB]

– symmetry is unbroken on the level of the forces

– groundstate breaks the symmetry

SSB appears in (classical and quantum) systems with infinitely many degrees of freedom
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♣ classical example

– elastic rod, length l, radius r, Young elasticity modul E

– force ~F in direction of the rod axis

→ cylindrical symmetry with respect to the rod axis

– critical value of the force Fcrit =
π3

4 r4

l2
E

F F

F < Fcrit F > Fcrit
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♣ SSB in scalar field theory with global U(1) symmetry

– global symmetry on the level of the Lagrange density

a complex scalar (spin 0) field Φ(t, ~x) = eiξ(t,~x)ρ(t, ~x) i.e. two real scalar fields ξ, ρ

L = 1
2∂µΦ

†∂µΦ− (
µ2

2
Φ†Φ +

λ

4
Φ†ΦΦ†Φ)

︸ ︷︷ ︸

potential V (Φ) = V (ρ) = µ2

2 ρ
2 + λ

4ρ
4, λ > 0

global U(1) symmetry w.r. to Φ(t, ~x)→ eiαΦ(t, ~x)

α = arbitrary constant
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– ground state ∂V (ρ)
∂ρ = 0 ←→ µ2ρ+ λρ3 = 0

µ2 > 0

µ2 < 0

V( ρ)

ρ
V( ρ)

v
ρ

minimum at

ρ(t, ~x) = 0

no SSB

minimum at

ρ(t, ~x) = ±v

v =

√
|µ|2
λ

SSB

expectation value of the field ρ in the ground state |0> <0 | ρ(t, ~x) | 0> =v 6= 0

field shift ρ(t, ~x) = v + η(t, ~x), <0 | η(t, ~x) | 0> = 0
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♣ SSB in scalar field theory with local U(1) gauge symmetry
Higgs mechanism

– local gauge symmetry on the level of the Lagrange density

L = 1
2 (DµΦ)

†DµΦ− V (Φ) + LAµfree

Dµ = ∂µ+i g Aµ(t, ~x)

where Aµ(t, ~x) is the U(1) gauge field

and g the U(1) gauge coupling

local U(1) gauge symmetry with respect to

Φ(t, ~x) → eiα(t,~x) Φ(t, ~x)

α(t, ~x) = arbitrary function of (t, ~x)

– Higgs mechanism µ2 < 0, i.e. SSB: Φ(t, ~x) = eiξ(t,~x) (v + η(t, ~x))

special gauge transformation to unitary gauge

α(t, ~x) = −ξ(t, ~x) → Φ(t, ~x)→ (v + η(t, ~x))

1
2 (DµΦ)†DµΦ in L contains

1
2(vg)

2AµA
µ =: 1

2m
2
AAµA

µ
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the ξ-field is ’eaten’ by Aµ the gauge field Aµ aquires a mass mA = gv

balance of number of fields

before field shift after field shift, in unitary gauge

Aµ, spin 1, mass=0 2 Aµ, spin 1, mass 6= 0 3

ξ, η 2 η 1

– the physical Higgs field η(t, ~x) with spin 0 and mass mH =
√

2 | µ |

♣ SSB in the Standard Model

– Higgs sector 4 scalar fields (= 1 complex SU(2)L doublet field with hypercharge Y = +1)

– local SU(2)L × U(1)Y gauge invariance in L

∗ including the Higgs sector
∗ including gauge invariant Yukawa couplings of l.h. and r.h. lepton and quark fields

to the Higgs doublet field
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– additional parameters

∗ µ2, λ in V (scalar fields), SSB for µ2 < 0 ←→ v =

√
|µ|2
λ , mH =

√
2 |µ |

∗ Gψ, a Yukawa coupling for each quark and charged lepton

– spontaneous symmetry breakdown is arranged such that

SU(2)L × U(1)Y
spontaneously broken to→ U(1)em

– Higgsmechanism → massive gauge fields W±, Z

3 of the 4 scalar fields are eaten by the W±, Z gauge fields →

mW± = gv
2
, mZ =

m
W±

cos θW
mγ = 0 remains
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– masses for quarks and charged leptons from the Yukawa couplings

mψ = v√
2
Gψ for ψ = quarks and charged leptons

– one physical Higgs boson spin 0, mH =
√

2 |µ |

– additional interactions

∗ Higgs boson selfinteractions
∗ gauge interactions of Higgs bosons with gauge bosons W±, Z
∗ Yukawa interactions of Higgs bosons with quarks and leptons

– additional parameters

4 parameters for quark mass mixing
→ violation of invariance under time reversal t→ −t
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summary on the gauge theory of the Standard Model

the Standard Model is a local gauge theory with gauge group

SU(3)c × SU(2)L × U(1)Y

and spontaneous symmetry breakdown

SU(2)L × U(1)Y
spontaneously broken to→ U(1)em

All gauge interactions are fixed by the gauge principle in terms of the three parameters

• gc, the gauge coupling of the SU(3)c colour gauge interactions

• e, the gauge coupling of the U(1)em electromagnetic gauge interactions

• sin θW , relating e by e = g sin θW and e = g′ cos θW to the gauge couplings g and g′

of the SU(2)L × U(1)Y unified electroweak gauge interactions
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4. quantum effects, some applications and

key precision tests

♣ quantum effects and precision tests in QED

– determination of αem from quantum hall effect αem = 1/137.03599911(46)

– precision test magnetic moment of the electron

the electron has spin = intrinsic angular momentum (= 1
2h̄) and electric charge (-1)

→ it has a magnetic moment
µe = (1 + ae)µB µB =Bohr magneton

2002: ae exp = 0.0011596521859(38) ae theo = 1
2
αem
π + C2(

αem
π )2 + C3(

αem
π )3

+C4(
αem
π )4 + ...

C2, C3, C4 calculated in QED with

me=0.510998918(44)MeV →

→ a second determination of

αem = 1/137.0359988(5)

of equal precision and in perfect agreement
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– precision test magnetic moment of the muon

2004 and 2006: aµ exp = 0.00116592080(63)

with αem and me → mµ=105.6583692(94)MeV up to O((α5
em)) as well as including weak and

hadronic quantum corrections!

2005 and 2006: aµ theor = 0.00116591805(56)

∆ aµ = aµ exp − aµ theor = (27.5± 8.4)× 10−10

2007: better agreement in aµ theor among the different groups due to new data from KLEO for aµ
had

∆ aµ = aµ exp − aµ theor = (28± 8)× 10−10

deviation of 3.3σ

signal for new physics beyond the standard model? (supersymmetry?)
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♣ running couplings in QED and QCD –
confinement and asymptotic freedom

– QED for simplicity for electrons only

evaluation of an important class of diagrams to all orders in perturbation theory of QED leads to

e+

e-

γ

e+

e-

e+

e-

e+

e-

γ

e+

e-

e+

e-

+

e+

e-

e+

e-

γ

e+

e-

+
γ

+

γ γ
...

running coupling of QED

αem(Q2) =
αem(Q2

0)

1−αem(Q2
0)

3π log Q
2

Q2
0

√

Q2 = momentum transfer

uncertainty principle:
√

Q2 ∆x >∼ h̄

αem(0)= 1/137.03599911(46)

increasing distance ∆x↗, i.e. Q2↘: αem(Q2)↘
screening of electric charge
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– QCD evaluation of the corresponding class of diagrams to all orders in perturbation theory

of QCD – provided αs = g2
c/(4π)� 1 – leads to

q q qq

q

qq

q

q

αsO(      )2

Σ
all q’gluon

qq q

gluon gluon

gluon

gluon

gluon gluon

gluon

gluon

gluon
+

qq

q q

q q

+ ...  

’

’

+

+

running coupling of QCD

αs(Q
2) =

αs(Q
2
0)

1+(11−2
3nq)

αs(Q2
0)

4π log Q
2

Q2
0

valid for αs � 1

nq = number of quark flavours, 11 − 2
3nq > 0 for

nq ≤ 16

the antiscreening is the consequence of the gluon

selfinteraction, which in turn is the consequence

of the gauge principle!

antiscreening screening
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αs(Q
2) =

αs(Q
2
0)

1+(11−2
3nq)

αs(Q2
0)

4π log Q
2

Q2
0

increasing distance ∆x↗, i.e. Q2↘: αs(Q
2)↗

antiscreening of colour
→ suggests confinement

decreasing distance ∆x↘, i.e. Q2↗: αs(Q
2)↘0

→ asymptotic freedom (no interaction for Q2 →∞)
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– qualitative discussion

QED QCD

qq

qq

qq

qq

qq

q

gg

gg
gg

gg

gg

q

vacuum polarisation

the +- pairs effect
the qq pairs effect screening

the gg pairs antiscreening

altogether

screening antiscreening
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2006: running αem(Q2) – on the right in a plot 1/αem(Q2) – versus Q2 from LEP
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Bethke 2006:

world average

αs(MZ) =

0.1189± 0.0010
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Bethke 2006: running
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Bethke 2006:
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♣ test of asymptotic freedom and of three colours process of interest:

e+e− → all hadronic final states at small distances, i.e. at large Q2 (m2
b � Q2 � m2

Z)

parton model = ’zeroth order’ QCD, asymptotic freedom approximated by αs = 0: no colour

interaction between the q and q̄, i.e. no exchange or radiation of gluons, etc.

Re+e− =

∑

all hadronic final states | e+e− → hadrons |2
| e+e− → µ+µ− |2 =

e+

e- qQq e
γ

q
2

e+

e-

+µ

µ-Qµ e
γ

2

Σ
all quarks q

×
{

probability that the qq̄ final state turns

at large distances into some hadronic final state
︸ ︷︷ ︸

≡ 1 due to confinement

=
∑

all quarks qQ
2
q = 3

∑

q=u,d,s,c,bQ
2
q= 3

(
4
9

+1
9

+1
9

+4
9

+1
9

)

u d s c b

=
11

3
= 3.67

colour
↑
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sensitive to

– asymptotic freedom

– number of colours

– electric charges of the quarks
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♣ deep inelastic scattering and proton structure
functions as test of perturbative QCD

HERA!

– process

e±p → e± all hadronic final states (X)

at small distances, i.e. at large Q2

e±, kµ e±, k′µ

p, pµ
X

γ, qµ

– two variables

∗ Q2 =−q2 = −(momentum transfer)2
carried by the photon

Q2↗:
· the resolution increases with which the photon probes the (electrically charged) constituents of

the proton, i.e. the quarks

· αS(Q2)↘, which allows to treat the interactions between the quarks and gluons in the proton

within the framework of QCD perturbation theory

∗ x = Q2

2p·q = fraction of the proton momentum carried by the quark interacting with the photon

(0 ≤ x ≤ 1)
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– quark distribution functions qi(x,Q
2)

= probability to find the quark qi in the proton

with proton momentum fraction x, probed by

the photon carrying Q2.

– parton model = ’zeroth’ order QCD asymptotic freedom approximated by αs = 0

→ qi(x,Q
2) = qi(x), Q2 independence → scaling

– first order QCD DGLAP equations (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi)

coupled integro-differential equations for the quark distribution functions qi(x,Q
2) and the gluon

distribution function g(x,Q2)

Q2∂qi(x,Q
2)

∂Q2
=

αs(Q
2)

2π

∫

x

1dy

y
(qi(y,Q

2)Pqq(
x

y
) + g(y,Q2)Pqg(

x

y
))

Q2∂g(x,Q
2)

∂Q2
=

αs(Q
2)

2π

∫

x

1dy

y
(
∑

i

qi(y,Q
2)Pgq(

x

y
) + g(y,Q2)Pgg(

x

y
))

the splitting functions

P are known from QCD

Pqq(z) Pqg(z) Pgq(z) Pgg(z)

q

q

g q
g

q

q

q

g g

g

g

prediction of scaling violation
as function of Q2
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♣ quantum effects in electroweak interactions

– indirect determination of mt through its effect in loops at LEP and SLD, eg.

b−
W+

W+

t

f

assumption: no effects from new physics
beyond the Standard Model

– comparison with direct measurement of mt at Tevatron (D0 and CDF) 2006

Lepton Photon 2007:
mt = 170.9± 1.8GeV from Tevatron
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indirect determination of mH, status 2007

lower bound on Higgs mass mH > 114.4, resp. 117 GeV

at 95% CL from LEP resp. Tevatron (ongoing search up to 200GeV)

global fit for the Higgs mass mH = 76
+33

−24
GeV

upper bound at 95% CL on Higgs mass

mH < 144 GeV ignoring the direct lower bound of 114.4 GeV

mH < 182 GeV including the direct lower bound of 114.4 GeV

A light Higgs around the corner?
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Lepton Photon 2007

67



Lepton Photon 2007: next to leading order variant of sin2 θW
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Lepton Photon 2007: precision experiment: total Z width ΓZ
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5. Physics beyond the Standard Model

♣ open questions in the Standard Model

– ’periodic system’ of elementary particles

τν

µν

eν

2/3

0

-1

family

e

µ

τ

u

d

u

d

u

d
c

c
c s

s
s

t
t

t b
b

b

electric charge

colour

generation

-1/3

∗ more than 3 generations?

no, if they have neutrinos
lighter than mZ/2

∗ if 3 generations, why 3?

70



– unknown parameters

10
0

10
−1

10
−2

10
−3

10
−5

10
−4

10
−6

10
−7

10
−8

10
3

2
10

10
1

Qψ = 0 −1 −1/3 2/3

νµ

ντ

νe

e

µ

τ

s

d

b

t

u

c

mass [GeV]

∗ why is m1� m2� m3? (1,2,3 denote generation indices)

∗ why is m2
3
> m−1

3
> m−1 > m0 for each generation except for mu < md

(the indices denote the electric charge)
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– further questions

∗ where is the Higgs Boson?

∗ why three gauge forces

(→ three undetermined gauge couplings)?

why the gauge groups SU(3)c × SU(2)L × U(1)Y ?

∗ origin of parity violation?

– expectation

answers to these questions from measurements at smaller distances, i.e. at higher
momenta.

♣ experimental signatures for neutrino masses

Experimental signatures suggesting neutrino masses, neutrino mass mixing, neutrino
oscillations.

This issue leads beyond the SM; it is discussed in a separate DESY summerschool lecture.
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♣ substructure

– hypothesis

in
cr

ea
si
n
g

h
er

es
y →

Higgs boson
leptons and quarks
((W±, Z bosons))







are composite partic-
les, built from smaller
common constituents
= preons

– Standard Model charges electroweak and colour forces remain gauge forces

if preons carry appropriate electroweak and colour charges

– model building

remember:

atoms are electrically neutral, but bound
states of the electrically charged electrons and
nucleus

protons and all hadrons are colour neutral,
but bound states of coloured quarks

– basic assumptions

∗ preons carry hypercolour, a new conserved quantum number →
bound states of preons (among them quarks and leptons) are hypercolour neutral

∗ there exists a local hypercolour gauge theory leading to confinement of preons in
their bound states
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– basic question and constraint

∗ radius of quarks and leptons <∼ 10−16 cm → expected from uncertainty principle

mass of bound states of preons >∼ O(200GeV)

∗ theory has to provide a natural explanation, why the composite quarks and leptons
are so light in comparison to this scale →
chiral symmetry, a strong constraint on model building

– prediction of new exotic particles

suitable combinations of preons lead to the bound state quarks and leptons etc.

depending on the specific model, further allowed bound states of preons lead to the

prediction of new particles

with exotic electroweak and colour charges and

masses >∼ O(200 GeV)

74



– examples of new (composite) particles HERA

∗ leptoquarks (bosons)

q (d)u

e
+-

leptoquark
lepton

q-jet

anything
proton
(uud)

∗ leptogluons (fermions)
e

+- lepton

anything
proton
(uud)

gluon jetgluon

leptogluon

♣ Additional gauge groups

– an additional U(1) gauge group

SU(3)c × SU(2)L × U(1)Y
︸ ︷︷ ︸

× U(1) simplest example

standard model SSB of U(1) → massive Z’ gauge boson
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– a left-right symmetric gauge theory above p>∼mWR
: parity conserving theory

SU(3)c × SU(2)L × SU(2)R × U(1)B−L
︸ ︷︷ ︸

SSB to U(1)Y →massive WR, ZR gauge bosons

♣ grand unification of the electroweak and colour forces

– assume the “grand desert”, i.e. no new physics for

10−16 cm >∼ distance d >∼ 10−29 cm,

i.e. according to the uncertainty principle for

102 GeV <∼ momentum p <∼ 1015 GeV

– extrapolation of the running couplings to higher momenta p from experimentally

determined initial values at p = mZ

αs(p) = g2
c/4π, α1(p) = (5/3) g′2/4π, α2(p) = g2/4π,

76



– unification of gauge couplings

αs(p) ≈ α1(p) ≈ α2(p)
at p ≈ 1015 GeV (i.e. d ≈ 10−29 cm)

with slight mismatch
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– unification of gauge forces suggesting
one single fundamental force, unifying

the electroweak and colour forces in
terms of a single (undetermined) coupling
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– model scenario

∗ single fundamental force = gauge force

∗ gauge group contains SU(3)c × SU(2)L × U(1)Y smallest group: SU(5)

number of gauge bosons: 5× 5− 1 = 24, among them 8 gluons, 3 W±, Z, 1 γ.

→ 12 of the 24 SU(5) gauge bosons have to be heavy

∗ via spontaneous symmetry breakdown SU(5)→ SU(3)c × SU(2)L × U(1)Y

at p ≈ 1015 GeV → mgauge boson ≈ 1015 GeV

∗ heavy gauge bosons mediate proton decay, e.g. p→ e+π0 problem!

predicted lifetime τp ≈ 1031 years, experiment for p → e+π0: τp > 1.6 · 1033

years.

∗ possible solution: grand unification with supersymmetry
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♣ unification with gravity?

– gravitational forces are described by general relativity (classical theory)

– gravitational forces become of comparable size as electroweak and color forces at the

Planck scale p ≈ 1019 GeV =̂ d ≈ 10−33 cm

– problem: NO renormalizeable quantum field theory

– substantial amelioration by supersymmetry an extended space-time symmetry

–
leading to particle multiplets
(fermion,boson) with ∆ spin = 1

2

each standard model particle has a
supersymmetric partner

leptons → sleptons (spin 0)
quarks → squarks (spin 0)
gauge bosons → gauginos (spin 1/2)
Higgs boson → higgsino (spin 1/2)
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– → supergravity

– superstring theory (mainly relevant for p ≥ 1019 GeV)

∗ elementary fields → strings with length 10−33 cm

∗ leptons, quarks, gauge bosons, Higgs boson are lowest string excitations

♣ grand unification with supersymmetry

– Implement

supersymmetry into the Standard Model

→ minimal supersymmetric Standard Model

→ improved renormalizeability properties

– soft supersymmetry breaking (necessary since mparticle 6= msparticle)
at scale MSUSY ≈ 200-1000 GeV →

msparticles ≈ 200-1000GeV
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– grand unification in the supersymmetric framework (e.g. with SU(5) unifying gauge group)

unification of gauge couplings at p ≈ 2 · 1016 GeV
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(marginally) no problem with
proton decay

The unifying theory implies violation of baryon number and of time reversal invariance
which – together with thermal inequilibrium – allows to explain

the baryon asymmetry of the universe

→ of interest for the cosmolgy of the early universe
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proton decay

appearance of humans

formation of protons from quarks

spontaneous breakdown of the

electroweak gauge symmetry

spontaneous breakdown of the

unifying gauge symmetry
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♣ Extra dimensions

– Theoretical developments based on the idea that there are extra dimensions in addition
to the 4 space-time dimensions.

– Idea with the most immediate implications for future experiments:

while the Standard Model gauge interactions “live” in our habitual four dimensions,
gravitational forces act in a higher dimensional space with the result that gravitational
forces become comparable in strength to the Standard Model gauge forces at a mo-
mentum scale as low as

µ ≈ 1000 GeV.

– Grand unification as discussed above has then to be reconsidered under the new
circumstances; it is not straightforwardly recovered.

♣ Noncommutative Geometry

Noncommuting space-time coordinates are assumed. Effects can be looked for at future
Accelerators.
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