## Research with Synchrotron Radiation

## Part II

Ralf Röhlsberger

- Principles of structure determination
- Experiments at Storage Rings
  - Diffraction/Scattering
  - Spectroscopy
  - Imaging
- Experiments at Free Electron Lasers

## Experiments with Synchrotron Radiation

Reveal the structure and dynamics of matter by performing scattering experiments with photons



Analyze the distribution of scattered photons in reciprocal space $\rightarrow$  Diffraction... in real space $\rightarrow$  ImagingAnalyze the energy spectrum of scattered photons $\rightarrow$  Spectroscopy

### Principles of structure determination



 $\vec{q} = \vec{k} - \vec{k}_0$  momentum transfer

Relation between A(x) and A(q):

$$A(q) = \int A(x)e^{iqx}dx \quad (1)$$

Task: Determine A(x) from measured  $|A(q)|^2$ Problem: Eq. (1) cannot be simply inverted, because the phase is lost (Phase problem of crystallography)

### Principles of structure determination



Position of diffraction peaks given by Bragg's equation:

$$n \lambda = 2d \sin \Theta$$

# Diffraction Experiments

## Protein crystallography



### Diffraction pattern





### Single crystal diffractometers



Single crystal diffractometer in  $\kappa$ -geometry with CCD and scintillation counter. Crystal mounted on a glass fiber. The  $\kappa$ -diffractometer has 3 rotations for the crystal and one for the detector.

### The proteasome

(cuts proteins into peptides and amino acids)





### The ribosome (synthesis of proteins)

### The 305 subunit of the ecoli ribosome



### Extremely large complexes (e.g., viruses)



### Example: Blue Tongue Virus



J.M. Grimes et al., Nature 395, 470-478 (1998)

### Grain mapping of metals and alloys



## Small angle x-ray scattering (SAXS)

Craze formation in polycarbonate upon elongation below the glass transition temperature





 $1 \rightarrow 4$ : increasing elongation

## $\mu \text{SAXS}$ : SAXS with a microfocused beam



Collection of SAXS patterns: From these pattern the orinetation of the fibrils is derived



## X-ray scattering under high pressure GFZ (GeoForschungs Zentrum Potsdam) @ DESY



1750 t press for in situ studies of large sample volumes. Maximum pressure: ~ 25GPa Temperature: > 2000K

Study of material under the conditions of the earths lower mantle.



### X-ray reflection from surfaces

Index of refraction

$$\delta = \frac{\rho_e r_0 \lambda^2}{4\pi}, \quad \rho_e \equiv \text{ electron density}$$
  
 $\approx 10^{-5} - 10^{-6} \text{ for } \lambda = 0.1 \text{ nm}$ 

### For x-rays, every medium is optically thinner than vacuum !

reflectivity

X-rays incident on a surface below the critical angle are totally reflected

Critical angle of total reflection

 $n = 1 - \delta$ 

$$\varphi_c = \sqrt{2\delta}$$

For angles  $\varphi < \varphi_c$  the penetration depth of hard x-rays is only a few nm.

X-rays can be used for the study of structures at surfaces



### Monitoring the growth of oxide layers: $Ta_2O_5$ on Ta



Rostock (2001)

### Interfacial Melting of Ice in Contact with SiO<sub>2</sub>



### Interfacial Melting of Ice in Contact with $SiO_2$



### Exploiting the coherence of x-rays:

Imaging of magnetic domains via x-ray holography



## Spectroscopy

### Absorption spectroscopy

Photons are resonantly absorbed near an absorption edge

The outgoing photoelectron is scattered by the surrounding atoms

Interference of the outgoing electron wave with the backscattered electron waves

- $\rightarrow$  Modulation of the cross section as function of energy
- $\rightarrow$  Information on the distance of neighbouring atoms



### Absorption spectroscopy: Experimental setup



## Features of X-ray absorption spectroscopy



## Regions in the XAS spectra



(Near Edge X-Ray Absorption Fine Structure) Contains information about the chemical binding state of the absorbing atoms

# Spectroscopy at DORIS III

#### •Techniques:

- absorption spectroscopy
- photoemission
- luminescence
- soft X-ray spectroscopy
- micro-fluorescence and micro-XAFS

#### Fields of application:

- surfaces
- atoms/molecules/clusters
- catalysis/chemistry
- materials science
- geo-/environmental science

P. Kappen et al., *J. Catal.* 198(2001) 56-65

### Example:

In situ study on  $Cu/Fe(Fe/Cr)_2O_4$  for water gas shift reaction

 $\rm CO + H_2O \rightarrow CO_2 + H_2$ 

Use catalyzer to reduce reaction temperature



Evolution of spectra under catalytic conditions during heating

- intermediate stable Cu(I)-Phase
- stability depends on Cu-concentration

## Inelastic x-ray scattering under high pressure

X-rays change energy due to interaction with phonons

Example: Determine the speed of sound in Fe under pressure



### G. Fiquet et al., Science (2000)

Imaging

### First imaging experiment

The easiest scattering experiment is the transmission through a material

First commercial x-ray tube



### Imaging with x-rays

1895: Discovery of x-rays by W. C. Röntgen Detector: photographic plate



Exposure time: 5 min

### Microtomography at DORIS III



### Tomography of porous PLGA scaffold

Biodegradable polyester scaffolds as cellular microenvironment for biological tissue engineering



μCT at BW2 using 9 keV sample diameter: 5 mm

slice (2 x 2 mm<sup>2</sup>) spatial resolution: 5.4 μm



### Micro fluorescence tomography: Analysis of elemental distributions

### Example: Root of mahagoni tree



Lengeler et al. JSR, 6, 1153-1167 (1999)



Experiments at Free-Electron Lasers

### Generation of ultrashort, coherent light pulses via Self-Amplified Stimulated Emission (SASE)



### Characteristics of XFEL radiation



- 10<sup>12</sup>-10<sup>13</sup> photons/pulse
- 100 fs pulse length
- intrinsic energy resolution: 0.1%
- from single pulse to ~40000 pulses/s

### Examples for ultrafast processes



Fast processes can be studied with femtosecond (optical) lasers, but correlation with structural information on the atomic scale is only possible with x-rays !!

# Time resolved investigation of the photo ionization of CO-myoglobin

- pump-probe technique
- X-ray crystallography

Variable delay between laser pump pulse and X-ray probe pulse.



### Time resolved crystallography

### Structural changes during photolysis of CO-Myoglobin



### Time resolved crystallography

Structural changes during photolysis of CO-Myoglobin



XFEL: 1000 times better time resolution than today

### A dream: Single - molecule diffraction



# Potential for biomolecular imaging with femtosecond X-ray pulses

#### Richard Neutze\*, Remco Wouts\*, David van der Spoel\*, Edgar Weckert†‡ & Janos Hajdu\*

\* Department of Biochemistry, Biomedical Centre, Box 576, Uppsala University, S-75123 Uppsala, Sweden † Institut für Kristallographie, Universität Karlsruhe, Kaiserstrasse 12, D-76128, Germany

Nature 406, 752 (2000)

### Theoretical calculations

Explosion of a biomolecule (T4 lysozyme) after exposure to a 2-fs XFEL pulse (E = 12 keV)



First demonstration of ultrafast coherent Xray diffraction

> *Incident FEL pulse:* 30 fs, 32 nm, 3 x 10<sup>13</sup> W cm<sup>-2</sup>



#### Pulse #1: Diffraction pattern



pulse #1 Reconstructed image





*H. Chapman et al. Nature Physics 2, 839 (2006)* Conclusion: Structure diffracts the x-rays before being destroyed !