Joachim Mnich DESY

**Physics at** 

(Anti)Proton-Proton

Colliders

August 28th, 2006

August 28, 2006

### **Outline:**

- Reminder particle physics
- Proton versus electron collider
- Tevatron and LHC
- Physics at proton colliders
- LHC experiments
- Standard Model physics
- Higgs searches
- New phenomena (e.g. SUSY)



J. Mnich: Physics at pp colliders

Introduction

## **The Standard Model**

### Fermions: the building blocks of matter



## **The Standard Model**

### **Bosons: the carriers of forces (interactions)**





Electroweak interactions  $SU(2)_L \times U(1)$ :  $\gamma$ , Z, W± Strong interactions QCD SU(3)c: g Gravitation?

ALE TRO

 $m_{\gamma} = m_{g} = 0$ 

August 28, 2006

 $m_Z = 91.1875 \pm 0.0021 \text{ GeV}$  $m_W = 80.329 \pm 0.029 \text{ GeV}$ 

- Why are the fermion masses so different? ranging from  $m_{ve} < 2 \text{ eV} \dots m_t = 175 \text{ GeV}$
- Massive gauge bosons Z, W± a priori inconsistent with local gauge symmetries

The Origin of Mass

V(Φ)

Φ.

1)

- Partial answer: Higgs mechanics spontaneous symmetry breaking
  - Predicts the existence of a neutral, spin 0 boson
  - Last missing particle of the Standard Model
  - Mass  $m_H$  is a free parameter once measured, all properties of the Higgs boson are fixed in the theory

### Today's knowledge about the Higgs mass

### 114.4 GeV < $m_{\rm H} < \approx 1 \text{ TeV}$

(experiment)

August 28, 2006

### (theory)

### • Is there a universal force (interaction) at some high energy?

**Unification of Forces** 

### Historical examples

August 28, 2006



Maxwell's unification of electric and magnetic forces (1864)

Electroweak interaction unification of electromagnetic and weak interations

シール ノンドの同様の解析が まてごぼう

**Glashow-Salam-Weinberg model** 

- prediction of W and Z bosons
- Higgs mechanism is a cornerstone of the model

Are there other, not yet discovered types of matter? The answer is yes! From studies of

**Unknown Types of Matter** 

- rotational curves of galaxies
- the cosmic microwave background
- very distant supernovae

### the universe consists of

- $\approx$  5% baryonic matter
- $\approx$  25% dark matter (neutral, weakly interacting)
- $\approx$  70% dark energy???

### Supersymmetry (SUSY) is a popular SM extension

W

- candidate for dark matter
- unification of forces possible

Quark Top Electron

Wino Higgsino

August 28, 2006

Squark Stop Selectron

Supersymmetric partners of SM particles Spin differs by 1/2

Are quarks and leptons really elementary? e.g. structureless, pointlike objects?

Why are there 3 families?

What is the origin of the matter-antimatter asymmetry in the universe? What is the origin of CP violation?

**Other Questions and Problems** 

Are there additional forces and gauge bosons?

Answers to these questions need

- experiments at high energy
- and with high precision

August 28, 2006

Many experiments at the LEP & SLC e+e- colliders, the Tevatron pp collider etc. have explored the energy range up to O(100 GeV) with high precision

**State of the Art** 

the Standard Model is correct to the 1-loop level no evidence for new phenomena (e.g. SUSY) the Higgs boson, if it exists, is probably light



### **Discoveries**

 Increase collision energy to explore TeV region explore the allowed Higgs mass range search for Supersymmetry and other new physics phenomena be prepared for the unexpected

### LHC

### Precision measurements and tests of the SM

measure SM parameters m<sub>w</sub>, m<sub>t</sub> measure properties of new particles (Higgs, SUSY) and check consistency of the model

Future

### LHC & ILC

Why a proton collider like the LHC? e<sup>+</sup>e<sup>-</sup> machines like LEP are ideal machines for precision emasurements:

- e<sup>+</sup>/e- are point-like, no substructure very clean events
- centre-of-mass system
- event kinematics completely fixed

**Events at proton collider are much more complex:** 

- protons are not elementary

hard scattering of partons (quarks & gluons)

- underlying event
- use only part of the beam energy
- event kinematics only partially constraint

August 28, 2006

J. Mnich: Physics at pp colliders

**Proton Collider** 

ALEPI

e+e- →

H+X

**Problem of Electron Storage Rings** 

Drawback of circular electron colliders like LEP: Energy loss due to synchrotron radiation (Accelerated charge do radiate photons!)

- Radiated power P (in synchrotron photons) ring with radius R and energy E
- Energy loss per turn
- Ratio of energy loss between electrons and protons



To reach higher energies at future colliders: a) Linear electron-positron colliders (→ ILC) b) Proton colliders (→ LHC) LHC uses existing LEP tunnel!

August 28, 2006

#### **Comparison of past and future electron and proton colliders:**

**History of Colliders** 



August 28, 2006

J. Mnich: Physics at pp colliders

13

## **The Tevatron Collider at Fermilab**

### **Proton-Antiproton** Collider

**1992 - 1996** Run I with 2 experiments CDF and D0  $\sqrt{s} = 1.8$  TeV  $\int$ Ldt = 125 pb-1

### 1996 – 2001 Upgrade

- new injector, antiproton recycler
  - → higher luminosity
- detector improvements

since March 2001 Run II,  $\sqrt{s} = 1.96$  TeV

August 28, 2006



## **Both experiments are running** collecting & analysing data

## **Experiments at the Tevatron**



- Upgrades for Run II: - tracking system large Si-strip detector - forward calorimeter
  - trigger and DAQ systems

#### 

### $\approx$ 700 physicists

**The CDF detector** 

August 28, 2006

## **Experiments at the Tevatron**

### The D0 detector

August 28, 2006





institutes from 19 countries  $\approx$  700 physicists

### **Upgrades for Run II:**

- inner detector
- magnetic field
- forward muon
- trigger and DAQ systems

## The Large Hadron Collider (LHC) at CERN

### **Proton-proton collider in the former LEP tunnel at CERN (Geneva)**



and I get the is the

**Highest ever energy per collision** 14 TeV in the pp-system Conditions as 10<sup>-13</sup> – 10<sup>-14</sup> s after the Big Bang 4 experiments: ATLAS CMS LHC-B specialised on b-physics **ALICE** specialised for heavy ion collisons **Constructed in a worldwide collaboration Start planned for 2007** 





August 28, 2006

## **The Large Hadron Collider LHC**

LHCb



## **Challenges for the LHC**

Superconducting dipole magnets to keep 7 TeV protons on circular path ( $r \approx 3 \text{ km}$ )

|B| = 8.33 Tesla

**1232 dipole magnets are needed** (+ quadrupole, sextupoles etc.) each dipole is 15 m long

**1.9 K operating temperature** supraliquid He largest cyrogenic facility in the world

**Quench protection** stored energy in one dipole: 8 MJ

corresponds to a 40 t truck at 50 km/h!

August 28, 2006





LHC dipole design incoporates reversed field for oppositely rotating proton beam

**BTW:** 

the stored energy in the LHC proton beams is 350 MJ enough to melt 500 kg of copper!

## Status of the LHC

### LHC schedule: - first beam in 2007

- pilot run end 2007
- first full physics year in 2008

## **Progress: Example dipole cold masses**

August 28, 2006

Storage of cold masses on CERN site

Strail 12th





## **Installation in the LHC Tunnel**

### **Installation of cryogenic lines delayed in 2004 due to manufacturing problem**



Installation of magnets after cryogenics transport & interconn. time consuming on critical path

August 28, 2006

J. Mnich: Physics at pp colliders

HCQRLL2-000-CC000414

Everest VIT

JUIN 04

 $V_{max} = 3 \text{ km/h}$ 

21

10:26

## **Physics at Proton Colliders**



### **Protons are composite, complex objects**

- partonic substructure
- quarks and gluons

### Interesting hard scattering processes quark-(anti)quark quark-gluon qluon-gluon



However, hard scattering (high momentum transfer) processes are only a small fraction of the total cross section

- total inelastic cross section  $\approx$  70 mb (huge!)
- dominated by events with small momentum transfer

August 28, 2006

## **Proton-ProtonCollisions** Proton beam can be seen as beam of quarks and gluons with a wide band of energies

The proton constituents (partons) carry only a fraction  $0 \le x \le 1$  of the proton momentum

x<sub>1</sub>p

The effective centre-of-mass energy  $\sqrt{\hat{s}}$  is smaller than  $\sqrt{s}$  of the incoming protons

$$p_{1} = x_{1} p_{A}$$

$$p_{2} = x_{2} p_{B}$$

$$(if x_{1} = x_{2} = x)$$

 $p_A = p_B = 7 \text{ TeV}$ 

August 28, 2006

| To produce a particle of mass |                   |                  |  |  |  |
|-------------------------------|-------------------|------------------|--|--|--|
| mass                          | LHC               | Tevatron         |  |  |  |
| 100 GeV                       | $x \approx 0.007$ | $x \approx 0.05$ |  |  |  |
| 5 TeV                         | $x \approx 0.36$  |                  |  |  |  |

Note:

x<sub>2</sub>p

the component of the parton momentum parallel to the beam can vary from 0 to the proton momentum  $(0 \le x \le 1)$ the variation of the transverse component is much smaller (of order the proton mass)



Variables in pp Collisions

Transverse momentum  $p_T$  $p_T = p \sin \theta$ 

**Rapidity:** 
$$y = \frac{1}{2} \ln \frac{E + p_A}{E - p_A}$$

Differences in y are invariant under Lorentz boosts

**Pseudo-rapidity:**  $\eta = -\ln\frac{\theta}{2}$ 

handy approximation, do not need to know the particle mass



| -    | 1 00  | 200        | 2-1      | a de la come |
|------|-------|------------|----------|--------------|
| Augu | ST 28 | . ZUU      | 1        | SHEWE !!     |
|      | 1.00  | C. S. Call | Margare. | 10.5         |

 $\theta = 90^{\circ}$ 

 $\theta = 10^{\circ}$ 

proton

 $\eta = 0$ 

 $\eta \approx 2.4$ 

p<sub>T</sub>

proton

θ

**Parton Density Functions** 

### How do the distributions of the x-values look like? Measured at HERA in ep-scattering, e.g.:



August 28, 2006



### u- and d-quarks at large x-values gluons dominate at small x large uncertainties for gluons

## **Cross Section Calculation**

 $\sigma = \sum \int dx_{a} dx_{b} f_{a} (x_{a}, Q^{2}) f_{b} (x_{b}, Q^{2}) \hat{\sigma}_{ab} (x_{a}, x_{b})$ 

The test of the second

 $f_i(x_i, Q^2)$  = parton density functions

26

sum over initial states a,b



 $W^+$ 

August 28, 2006

### **Example: W production in leading order**

I LEAD AND THE MEL 1. 6 m. 1954  $\sigma(pp \rightarrow W) \approx 150 \text{ nb} \approx 240^{-6} \sigma_{tot}$ 

## **Parton Density Functions at the LHC**

 $10^{5}$ 

 $10^{8}$ 

 $10^{7}$ 

 $10^{6}$ 

 $10^{\circ}$ 

 $10^{\circ}$ 

 $10^{3}$ 

 $10^{2}$ 

 $10^{1}$ 

 $10^{0}$ 

 $10^{-7}$ 

y =

M = 10 GeV

 $10^{-6}$ 

 $10^{-5}$ 

 $(GeV^2)$ 

 $\mathbf{O}_{2}^{2}$ 

Q = M

**y** = **rapidity** 

M = 100 GeV

 $x_{12} = (M/14 \text{ TeV}) \exp(\pm y)$ 

M = 1 TeV

CELLE EVOLUTION

HER.

 $10^{-3}$ 

Х

 $10^{-2}$ 

M = 10 TeV

LHC is a proton-proton collider But fundamental processes are the scattering of

Quark – Antiquark Quark – Gluon Gluon – Gluon

**Examples:** 

10000

000

⇒ need precise PDF(x,Q<sup>2</sup>)
+ QCD corrections (scale)

qq

gg

H



J. Mnich: Physics at pp colliders

 $10^{0}$ 

fixed

target

 $10^{-1}$ 

### Rate of produced events for a given process

# $N = \sigma L$ $\sigma cross section [barn = 10^{-24} cm^{2}]$ $L luminosity [1/cm^{2}/s]$

-----

luminosity depends on machine parameters:
number of protons stored, beam focus at the interaction point, ...
luminosity should be high to achieve acceptable rates for rare processes

Luminosity

### **Comparison of colliders:**

- $10^{31}/\text{cm}^2/\text{s}$  LEP
- 2**4**0<sup>32</sup>/cm<sup>2</sup>/s Tevatron Run II design
- $10^{33}$ /cm<sup>2</sup>/s LHC initial phase ( $\approx 3$  years)
- $10^{34}$ /cm<sup>2</sup>/s LHC design luminosity (> 2010)

### 1 experimental year is about 10<sup>7</sup> s

- 10 fb<sup>-1</sup> per year in the initial LHC phase
- 100 fb<sup>-1</sup> per year later

## **Proton-Proton Collisions at the LHC**



2835 + 2835 proton bunches separated by 7.5 m
→ collisions every 25 ns = 40 MHz crossing rate

**10<sup>11</sup> protons per bunch** 

at 10<sup>34</sup>/cm<sup>2</sup>/s ≈ 25 pp interactions per crossing pile-up

 $\Rightarrow \approx 10^9$  pp interactions per second !!!

### in each collision

 $\approx$  1600 charged particles produced

### enormous challenge for the detectors

**Cross Section of Various SM Processes** 



August 28, 2006

### **Experimental Signatures**

1. Hadronic final states, e.g. quark-quark



no high  $p_T$  leptons or photons in the final state

holds for the bulk of the total cross section

2. Lepton/photons with high p<sub>T</sub>, example Higgs production and decay

> Important signatures for interesting events: - leptons and photons - missing transverse energy

August 28, 2006

## **Suppression of Background**



Reconstructed tracks with pt > 25 GeV



### with 25 pile-up events

removing tracks with p<sub>T</sub> < 25 GeV

requires high granularity (many channels) good position, momentum and energy resolution

August 28, 2006

**Detector Design Aspects** 

good measurement of leptons (high p<sub>T</sub>)

muons: large and precise muon chambers electrons: precise electromagnetic calorimeter and tracking

### good measurement of photons

good measurement of missing transverse energy ( $E_T^{miss}$ ) requires in particular good hadronic energy measurements down to small angles, i.e. large pseudo-rapidities ( $\eta \approx 5$ , i.e.  $\theta \approx 1^{\circ}$ )

in addition identification of b-quarks and τ-leptons precise vertex detectors (Si-pixel detectors)

Very important: radiation hardness e.g. flux of neutrons in forward calorimeters 10<sup>17</sup> n/cm<sup>2</sup> in 10 years of LHC operation

「「「「「「」」」

Trigger of interesting events at the LHC is much more complicated than at e<sup>+</sup>e<sup>-</sup> machines

**Online Trigger** 

interaction rate:  $\approx 10^9$  events/s max. record rate:  $\approx 100$  events/s event size  $\approx 1$  MByte  $\Rightarrow 1000$  TByte/year of data

 $\Rightarrow$  trigger rejection  $\approx 10^7$ 

collision rate is 25 ns (corresponds to 5 m cable delay) trigger decision takes  $\approx$  a few µs

> ⇒ store massive amount of data in front-end pipelines while special trigger processors perform calculations



### **The ATLAS experiment**

A Toroidal LHC ApparatuS



### ATLAS in a nutshell:

- Large air toroid with µ chambers
- HCAL: steel & scintillator tiles
- ECAL: LAr
- Inner solenoid (2 T)
- Tracker: Si-strips & straw tubes (TRD)
- Si-pixel detector 10<sup>8</sup> channels
  - 15 µm resolution

August 28, 2006

## **Status of ATLAS**

### Major structures assembled underground

August 2005: 8/8 toroid coils installed

August 28, 2006
#### **Examples of major detector components**

**Status of ATLAS** 



Feb. 2006

On schedule for 2007 - some smaller detector components deferred - stagging of DAQ

August 28, 2006

J. Mnich: Physics at pp colliders

**Barrel tracker** 

### The CMS experiment

**Compact Muon Solenoid** 

MUON CHAMBERS

TRA CRER

CRYSTAL ECAL

HCAL

CMS

#### CMS in a nutshell:

- 4 T solenoid
- µ chambers in iron yoke
- HCAL: copper & scintillator
- ECAL: **PbWO<sub>4</sub> crystals**
- All Si-strip tracker **220** m<sup>2</sup>, **10**<sup>7</sup> channels

Total weight

Overall length

Magnetic field

August 28, 2006

- Si-pixel detector similar to ATLAS

> : 12.500t. Overall diameter : 15.00m 21.60m

PORMARD

CALOR METER

RETURN YOKE

SUPERCON DUCTING

COIL

#### **Examples of major detector components**





22/36 super modules assembled

80 000 PbWO<sub>4</sub> crystals

Mostly on schedule for 2007 - delays in ECAL and Tracker

- prob. deferred installation of ECAL endcaps
- stagging of pixel & DAQ

J. Mnich: Physics at pp colliders

**CMS Solenoid** 

ECAL

### **Status of CMS**

#### Major structures assembled on surface Detector slices to be lowered in cavern

#### September 2005: coil inserted in yoke



August 28, 2006

#### Coil cooled down to 4.5°K February 2006



## Test on surface is currently going on 3.95 Tesla reached last week!

Large fraction of muon chambers installed



#### 11 slices: 5 barrel and 2\*3 endcaps



### Lowering of CMS

#### Crane installed Lowering starts in autumn 2006





August 28, 2006

### **Comparison of ATLAS and CMS**

|          | ATLAS    | CMS       |
|----------|----------|-----------|
| length   | ≈ 46 m   | ≈ 22 m    |
| diameter | ≈ 25 m   | ≈ 15 m    |
| weight   | ≈ 7000 t | ≈ 12000 t |

August 28, 2006



The second s

### **Comparison of ATLAS and CMS**

#### Physics performance: comparison in terms of mass resolutions

#### Table 8

Mass resolution for various states in the different experiments (at a luminosity of  $2 \times 10^{33}$  cm<sup>-2</sup> s<sup>-1</sup> in the case of ATLAS and CMS)

|                                                      | ATLAS (GeV $c^{-2}$ ) | $CMS (GeV c^{-2})$ | LHCb (GeV $c^{-2}$ ) | ALICE (GeV $c^{-2}$ ) |
|------------------------------------------------------|-----------------------|--------------------|----------------------|-----------------------|
| $B \rightarrow \pi \pi$                              | 0.070                 | 0.031              | 0.017                |                       |
| $B \rightarrow J/\psi K_S^0$                         | 0.019                 | 0.016              | 0.010                |                       |
| $Y \rightarrow \mu\mu$                               | 0.152                 | 0.050              |                      | 0.107                 |
| $H(130 \mathrm{GeV}c^{-2}) \rightarrow \gamma\gamma$ | 1.55                  | 0.90               |                      |                       |
| $H(150 \mathrm{GeV}c^{-2}) \to ZZ^* \to 4\mu$        | 1.60                  | 1.35               |                      |                       |
| $A(500 \mathrm{GeV}c^{-2}) \rightarrow \tau\tau$     | 50.0                  | 75.0               |                      |                       |
| $W \rightarrow jet jet$                              | 8.0                   | 10.0               |                      |                       |
| $Z'(3 \text{ TeV} c^{-2}) \rightarrow \mu\mu$        | 240                   | 170                |                      |                       |
| $Z'(1 \mathrm{TeV}c^{-2}) \to \mathrm{ee}$           | 7.0                   | 5.0                | _                    |                       |

From T. Virdee, Phys. Rep. 403-404 (2004) 401

1 -C

### Trigger & DAQ system

#### Similar design for ATLAS & CMS

Example CMS:Collision rate40 MHzLevel-1 max. trigger rate100 kHz<sup>†</sup>Average event size~ 1 Mbyte



Filter farm: approx. 2000 CPUs easily scaleable staged (lower lumi & saves money) uses offline software

August 28, 2006

### The longest journey starts with the first step...

#### Cosmic data taking with assembled detector components...



州街

into and liveting-investmilling

August 2006: cosmic with magnet on

### **Cosmic Data Taking ATLAS**



J. Mnich: Physics at pp colliders

August 28, 2006

#### 2007 LHC startup

single beam operation collisions: pilot run with low luminosity,  $\approx 1$  month at low beam energy: 450 GeV, perhaps up to  $\approx 1 \text{ TeV}$ 2008 first physics year at 7 TeV proton energy try to reach 10<sup>33</sup>/cm<sup>2</sup>/s **1 -10 fb**<sup>-1</sup> 2008 - 2010 three years at 1 - 240<sup>33</sup>/cm<sup>2</sup>/s  $\geq$  30 fb<sup>-1</sup> in total important for precision physics and discoveries  $\geq$  2011 high luminosity running at 10<sup>34</sup>/cm<sup>2</sup>/s 100 fb<sup>-1</sup> per year 2015 Upgrade to Super LHC 10<sup>35</sup>/cm<sup>2</sup>/s under discussion requires major machine and detector upgrades

**Possible LHC Schedule** 

August 28, 2006

# **Standard Model Physics**

Not a complete survey Just a few examples of - Tevatron results and - LHC prospects on QCD, W&Z bosons and top physics

August 28, 2006



### **QCD and Jet Physics**

Hard scattering processes dominated by QCD jet production

**Originating from quark-quark, quark-gluon and gluon-gluon scattering** 

#### colored objects fragment

 $\rightarrow$  observation of jets with high  $p_T$  in the detectors

#### **Studies of jet production is important**

- test of the experiment
- test of the theory, down to the smallest distances
- new physics, e.g. quark substructure?







**Measured jet cross section versus ET:** 

- comparison to theory
- good agreement over many orders of magnitude

theoretical errors

- QCD higher order (difficult)

- pdf

measurement can be used to check pdf

experimental errors

- jet energy scale

A jet is not a very well defined object:

- need algorithm to define it
- relation to parton energy → correction
  pile-up

#### Jet physics at the LHC E<sub>T</sub> spectrum, rate varies over 11 orders of magnitude Test QCD at the multi-TeV scale

**Jet Physics** 



August 28, 2006



#### **Measurement of α<sub>s</sub> at LHC limited by**

PDF (3%) Renormalisation & factorisation scale (7%) Parametrisaton (A,B)

 $\frac{d\sigma}{dE_{T}} \sim \alpha_{s}^{2}(\mu_{R})A(E_{T}) + \alpha_{s}^{3}(\mu_{R})B(E_{T})$ 10% accuracy  $\alpha_{s}(m_{z})$  from incl. jets

Improvement from 3-jet to 2-jet rate?

美国美国に、全国王が登場し、記録は

Verification of running of  $\alpha_s$  and test of QCD at the smallest distance scale

 $\alpha_s = 0.118 \text{ at } m_Z$  $\alpha_s \approx 0.082 \text{ at } 4 \text{ TeV} \text{ (QCD expectation)}$ 



August 28, 2006

#### W and Z bosons were discovered in proton-antiproton collisions 1983: UA1 & UA2 at the SppS collider at CERN

**Electroweak Physics (W and Z Bosons)** 

How do W/Z events look like at proton colliders?

Use leptonic decays (electrons & muons)

 $W \rightarrow lv$  high  $p_T$  lepton + missing  $E_T$ 

 $Z \rightarrow II \qquad 2 \text{ oppositely charged,} \\ high p_T \text{ leptons}$ 



**Examples of early W/Z events** 

August 28, 2006

### W and Z Bosons

#### **Example from the Tevatron:**





#### Electrons

- · Isolated el.magn. cluster in the calorimeter
- P<sub>T</sub>> 25 GeV/c
- Shower shape consistent with expectation for electrons
- Matched with tracks

#### Z → ee

- 70 GeV/ $c^2$  <  $m_{ee}$  < 110 GeV/ $c^2$
- $W \rightarrow ev$
- Missing transverse momentum > 25 GeV/c

#### Separation of W →lvevents from background



use  $Z \rightarrow ee$ ,  $\mu\mu$  events and precise  $m_z$  from LEP

August 28, 2006



August 28, 2006

J. Mnich: Physics at pp colliders

59

#### Any improvement at the LHC requires control of systematic error to 10<sup>-4</sup> level take advantage from large statistics $Z \rightarrow e^+e^-, \mu^+\mu^$ most experimental and theoretical uncertainties cancel in W/Z ratio e.g. Scaled Observable Method

W Mass at the LHC



### W Mass at the LHC

#### CMS: detailed study of statistical and systematic errors

#### 1 fb-1: early measurement 10 fb-1: asymptotic reach, best calibrated & understood detector, improved theory etc.

|                                                                                                                 | Source of uncertainty                                     | uncertainty                | $\Delta M_W$ [MeV/c <sup>2</sup> ] | uncertainty               | $\Delta M_W$ [MeV/c <sup>2</sup> ] |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------|------------------------------------|---------------------------|------------------------------------|
|                                                                                                                 |                                                           | wi                         | th 1 fb <sup><math>-1</math></sup> | with $10  \text{fb}^{-1}$ |                                    |
| Compa                                                                                                           | 8                                                         | scaled lepton- $p_{\rm T}$ | method applied to V                | $W \rightarrow e \nu$     |                                    |
|                                                                                                                 | statistics                                                | 1 -                        | 40                                 |                           | 15                                 |
|                                                                                                                 | background                                                | 10%                        | 10                                 | 2%                        | 2                                  |
|                                                                                                                 | electron energy scale                                     | 0.25%                      | 10                                 | 0.05%                     | 2                                  |
|                                                                                                                 | scale linearity                                           | 0.00006/GeV                | 30                                 | <0.00002/GeV              | <10                                |
|                                                                                                                 | energy resolution                                         | 8%                         | 5                                  | 3%                        | 2                                  |
|                                                                                                                 | MET scale                                                 | 2%                         | 15                                 | <1.5%                     | <10                                |
| El S                                                                                                            | MET resolution                                            | 5%                         | 9                                  | <2.5%                     | < 5                                |
| 1.0                                                                                                             | recoil system                                             | 2%                         | 15                                 | <1.5%                     | <10                                |
| 251                                                                                                             | total instrumental                                        |                            | 40                                 |                           | <20                                |
|                                                                                                                 | PDF uncertainties                                         |                            | 20                                 |                           | <10                                |
| The second se | $\Gamma_W$                                                |                            | 15                                 |                           | <15                                |
| the state                                                                                                       | $p_{\mathrm{T}}^{\mathrm{W}}$                             |                            | 30                                 |                           | 30 (or NNLO)                       |
| the state                                                                                                       |                                                           | transformation r           | nethod applied to W                | $l  ightarrow \mu  u$     |                                    |
|                                                                                                                 | statistics                                                |                            | 40                                 |                           | 15                                 |
|                                                                                                                 | background                                                | 10%                        | 4                                  | 2%                        | negligible                         |
|                                                                                                                 | momentum scale                                            | 0.1%                       | 14                                 | < 0.1%                    | <10                                |
| 1                                                                                                               | $1/p^T$ resolution                                        | 10%                        | 30                                 | <3%                       | <10                                |
| A STA                                                                                                           | acceptance definition                                     | $\eta$ -resol.             | 19                                 | $< \sigma_{\eta}$         | <10                                |
|                                                                                                                 | calorimeter $E_{\mathrm{T}}^{\mathrm{miss}}$ , scale      | 2%                         | 38                                 | $\leq 1\%$                | <20                                |
| - Aller                                                                                                         | calorimeter $E_{\mathrm{T}}^{\mathrm{miss}}$ , resolution | 5%                         | 30                                 | <3%                       | <18                                |
| The state                                                                                                       | detector alignment                                        |                            | 12                                 |                           | negligible                         |
|                                                                                                                 | total instrumental                                        |                            | 64                                 |                           | <30                                |
|                                                                                                                 | PDF uncertainties                                         |                            | $\approx 20$                       |                           | <10                                |
|                                                                                                                 | $\Gamma_W$                                                |                            | 10                                 |                           | < 10                               |

August 28, 2006

### W Mass at the LHC

#### **ATLAS study:**

August 28, 2006

| Source              | CDF Run Ib        | ATLAS or CMS                 | $W \rightarrow l v$ , one lepton species                                            |  |
|---------------------|-------------------|------------------------------|-------------------------------------------------------------------------------------|--|
|                     | 30K evts, 84 pb-1 | 60M evts, 10fb <sup>-1</sup> | 4                                                                                   |  |
| Statistics          | 65 MeV            | < 2 MeV                      |                                                                                     |  |
| Lepton scale        | 75 MeV            | 15 MeV                       | most serious challenge                                                              |  |
| Energy resolution   | 25 MeV            | 5 MeV                        | known to 1.5% from Z peak                                                           |  |
| Recoil model        | 33 MeV            | 5 MeV                        | scales with Z statistics                                                            |  |
| W width             | 10 MeV            | 7 MeV                        | ΔΓ <sub>W</sub> ≈30 MeV (Run II)                                                    |  |
| PDF                 | 15 MeV            | 10 MeV                       |                                                                                     |  |
| Radiative<br>decays | 20 MeV            | <10 MeV                      | (improved Theory calc)                                                              |  |
| P <sub>T</sub> (W)  | 45 MeV            | 5 MeV                        | P <sub>T</sub> (Z) from data,<br>P <sub>T</sub> (W)/ P <sub>T</sub> (Z) from theory |  |
| Background          | 5 MeV             | 5 MeV                        |                                                                                     |  |
| TOTAL               | 113 MeV           | ≤ 25MeV                      | Per expt, per lepton species                                                        |  |

**Combine both channels & both experiments** 

 $\Rightarrow \Delta m_{W} \le 15 \text{ MeV} (LHC)$ 

 Compare to
 LEP & Tevatron Run I/II

 2006:  $m_W = 80 \ 392 \pm 29 \ MeV$  LEP & Tevatron Run I/II

 2007:  $m_W \approx 80 \ \dots \pm 20 \ MeV$  (2.5 · 10<sup>-4</sup>)

**Di-Boson Production at the LHC** 

very interesting: WW,WZ,ZZ final states not yet observed at the Tevatron test triple gauge boson couplings (TGC) YWW and ZWW precisely fixed in SM YZZ and ZZZ do not exist in SM!



#### Why is the top quark so interesting special?

- by far the heaviest fermion
- could provide window to New Physics (mass generation)
- discovered 1995 at the Tevatron O(100) events observed in Run I
- still we know very little about it (mass) would like to measure all other properties
- top has a very short lifetime

the <u>only</u> quark that decays before forming hadrons

→ can determine spin, polarisation from ist decay products



August 28, 2006

J. Mnich: Physics at pp colliders

64

#### Top quarks are mainly produced in pairs (top-antitop) two main mechanisms:

t(p<sub>2</sub>

t(p<sub>1</sub>)

**Top Quark Production** 

 $q(p_1)$ 

 $q(p_2)$ 

#### gluon fusion

quark annihilation

ണ്ണ

 $t(p_3)$ 

Tevatron: mainly quark annihihaltion O(90%) LHC: mainly gluon fusion O(90%)

#### **Cross sections:**

 $g(p_1)$ 

 $g(p_2)$ 

- $\approx$  7 pb (Tevatron)
- ≈ 800 pb (LHC)

August 28, 2006

- → approx. 1 tt̄-pair per second at 10<sup>33</sup>/cm<sup>2</sup>/s
  - LHC is a top factory!



Top decay:  $\approx 100\%$  t bW Other rare SM decays: CKM suppressed t sW, dW:  $10^{-3} - 10^{-4}$  level t bWZ: O(10<sup>-6</sup>)

difficult, but since  $m_t \approx m_b + m_W + m_Z$  sensitive to  $m_t$ 

#### & non-SM decays, e.g. t bH<sup>+</sup>

In SM topologies and branching ratios are fixed: expect two b-quark jets plus W+W- decay products:

Louisber V.

- 2 charged leptons + 2 neutrinos
- 1 charged lepton + 1 neutrino + 2 jets
- 4 jets (no b-quark!)

August 28, 2006

tt decay modes

all hadronic

tau + jets

lepton + jets

cs

ūd

u

epton + jets

te/τu



August 28, 2006

J. Mnich: Physics at pp colliders

67

### **Top Mass Measurement**

68

select top pair events perform kinematic fit to improve resolution use W mass to fix jet energy scale

perform maximum likelihood fit to all observed events

#### **Result from D0:**



### **Top Mass at the LHC**



TIAS Atlantic East

is Event: full\_\$ATLAS\_RELEASE\_2073\_00028



August 28, 2006

# Because of the high production rate results on m<sub>t</sub> can be obtained with low/modest luminosity:

**Top Mass at the LHC** 



### **Top Mass at the LHC**

All decay topologies can be used: di-lepton events kinematics underconstraint but sensitive to m<sub>t</sub>

semi-leptonic events golden channel, ideogramm method limited by b-jet E-scale

fully hadronic top pairs suffers from QCD and combinatorial background

exclusive t  $\rightarrow$  J/ $\Psi$  + X decays low stat., but different systematic partial reconstruction J/  $\Psi$  + lepton from W



August 28, 2006





→ total top mass error  $\leq 1$  GeV possible with O(10 fb<sup>-1</sup>) of well understood data

August 28, 2006

J. Mnich: Physics at pp colliders

72
# **Importance of Top Mass**

 $\propto (\mathbf{m}_{t}^{2} - \mathbf{m}_{b}^{2})$ 

 $\propto \log m_{\rm H}/m_{\rm W}$ 

W.Z

## m<sub>t</sub> enters quadratically in electroweak loop corrections

m<sub>H</sub> only logarithmically

All observables include the combined effect!

→ m<sub>t</sub> plays a key role in precision test of the SM to predict the Higgs mass and once the Higgs is discovered to check the consistency of the model



August 28, 2006

# **Search for Higgs Bosons**

## **Emphasis on SM Higgs**

August 28, 2006

What do we know today about the SM Higgs boson? needed in the SM to accomodate masses (heavy gauge bosons and fermions) mass is not predicted, except that m<sub>H</sub> < 1000 GeV

**Standard Model Higgs Boson** 

direct searches at LEP

m<sub>H</sub> > 114.4 GeV

electroweak precision measurements (incl. m, measurement)



#### **Once the mass is know all other Higgs properties are fixed!**



**Higgs Boson Production at the LHC** 

### **Gluon-gluon fusion and W, Z fusion are dominant Cross section at the Tevatron almost factor 100 smaller!**

August 28, 2006

## Higgs couples proportional to masses ⇒ preferentially decaying into heaviest particle kinematically allowed

**Higgs Boson Decay** 

**Branching ratio versus m<sub>H</sub>:** 



Low mass  $(115 < m_{\rm H} < 140 \text{ GeV})$ 

H → bb make up most of the decays problem at the LHC because of the huge QCD background !

Intermediate  $(140 < m_H < 180 \text{ GeV})$ 

H → WW opens up use leptonic W decay modes

High mass (m<sub>H</sub> > 180 GeV) H → ZZ → 4 leptons golden channel!

What to do in the prefered low mass region, i.e.  $m_H < 140$  GeV? use H  $\rightarrow \gamma\gamma$ 

**Higgs Boson Decay** 

very low branching ratio O(10<sup>-3</sup>) but clean signature



internal loop with heavy charged particle W boson or top quark

10

J. Mnich: Physics at pp colliders

Total width of the Higgs (= inverse lifetime) at low masses Higgs is a very sharp resonance

#### **Γ**<sub>H</sub> << 1 MeV

 $\Gamma_{\mu} \approx m_{\mu}$ 

 $\Gamma_{\rm H}$  explodes once H  $\rightarrow$  WW, ZZ open up for m<sub>H</sub>  $\rightarrow$  1 TeV



August 28, 2006

# **Higgs Discovery**

How could we claim a Higgs discovery? Suppose a narrow resonance decaying into 2 photons



Signal significance S: count in signal region (defined by  $\Gamma_x$  and resolution)  $N_s$  number of signal events  $N_B$  number of background events

 $\mathbf{S} = \mathbf{N}_{\mathbf{S}} / \sqrt{\mathbf{N}_{\mathbf{B}}}$ 

 $\sqrt{N_B}$  fluctuation of background events use Poisson for small  $N_B$ 

#### **Convention:**

#### discovery if S > 5

Gaussian probability that background fluctuates up by more than 5  $\sigma$  is 10<sup>-7</sup>

August 28, 2006

#### Two critical parameters to maximise S:

1. Improve, i.e. reduce, experimental resolution  $\sigma_m$ if  $\sigma_m$  is worse by factor 2,  $N_B$  increases by factor 2  $\Rightarrow S = N_S / \sqrt{N_B}$  decreases by  $1/\sqrt{2}$ 

**Higgs Discovery** 

 $\Rightarrow$  S  $\propto$  1/  $\sqrt{\sigma_m}$ 

holds until  $\boldsymbol{\sigma}_{\!\!m} \approx \boldsymbol{\Gamma}_{\!\!X}$ 

2. Luminosity  $N_s \propto L$  and  $N_B \propto L$ 

### $\Rightarrow$ S $\propto \sqrt{L}$

August 28, 2006

## **Search for the Higgs Boson**





Combine all search channels and determine expected significance as function of the luminosity and Higgs mass:



Search for the Higgs Boson at the LHC

**10 fb<sup>-1</sup> sufficient for 5 σ discovery of the Higgs corresponds to 1 year at low luminosity 10<sup>33</sup>/cm<sup>2</sup>/s** 

August 28, 2006

The LHC will explore the entire Higgs mass region and definitely answer the question if there is a Higgs boson or not (holds for SM and MSSM)

**Summary on Higgs search** 

The modest amount of 10 fb<sup>-1</sup> of luminosity is required could be collected in 1-2 years

How about the Tevatron experiments?



For an estimated luminosity of 8 fb<sup>-1</sup> 2  $\sigma$  exclusion up to m<sub>H</sub>  $\approx$  180 GeV 3  $\sigma$  evidence up to m<sub>H</sub>  $\approx$  130 GeV

# **Search for New Phenomena**

## Supersymmetry (MSSM)

August 28, 2006

**SUSY Motivation** 

Why are we not satisfied with the Standard Model? many open questions, gravity, dark matter, unification of couplings, hierachy problem, ...

Need a more fundamental theory of which the SM is a `low energy` approximation:

Supersymmetry, Extra Dimensions, Technicolor, ... all predict new phenomena/particles at the TeV scale

Minimal Supersymmetric Model: symmetry between fermion and bosons for each SM particle there is a SUSY partner with  $\Delta s = \frac{1}{2}$ 

STAND TO SEE THE TWO

 $\widetilde{q}$  (s=0)

 $q (s=1/2) \rightarrow$ 

g (s=1)  $\rightarrow \qquad \widetilde{g}$  (s=1/2)

Ex.:

squarks

gluino

# **MSSM Particle Spectrum**

New multiplicative quantum number

 $R_p = +1$  for SM particles

 $\mathbf{R}_{n} = -1$  for SUSY partners

**R-parity R**<sub>p:</sub>

#### 5 Higgs bosons : h, H, A, $H^{\pm}$

| quarks             | $\rightarrow$ | squarks          |
|--------------------|---------------|------------------|
| leptons            | $\rightarrow$ | sleptons         |
| $\mathrm{W}^{\pm}$ | $\rightarrow$ | winos            |
| $\mathrm{H}^{\pm}$ | $\rightarrow$ | charged higgsino |
| γ                  | $\rightarrow$ | photino          |
| Ζ                  | $\rightarrow$ | zino             |
| h, H               | $\rightarrow$ | neutral higgsino |
| g                  | $\rightarrow$ | gluino           |

 $\widetilde{e}, \widetilde{\mu}, \widetilde{\nu}, \text{etc.}$   $\rightarrow \chi^{\pm}_{1}, \chi^{\pm}_{2}$ 2 charginos

 $\rightarrow \chi^{0}_{1,2,3,4}$ 4 neutralinos

g

R<sub>p</sub> is conserved in most SUSY models, e.g. MSSM SUSY particles are produced in pairs lightest SUSY particle (LSP) is stable (X<sup>0</sup><sub>1</sub>) LSP is candidate for dark matter LSP interacts only weakly (like a neutrino)

 $\Rightarrow$  SUSY signature: missing  $E_T$ 

August 28, 2006



# **SUSY Search at LHC**

Production of SUSY particles at the LHC squarks and gluinos are pair-produced through strong interaction, i.e. high cross sections but also sleptons and other SUSY particles can be pair-produced SUSY particles decay in a chain to

SM particles plus the LSP

#### ✓ 428.54<sup>-</sup> 1202.58<sup>4</sup>

## Signature:

leptons, jets and missing  $E_T$ depend of SUSY particles prodcued, on their branching ratios etc. Strategy to discover SUSY at the LHC: look for deviation from SM in distributions e.g. multi-jet +  $E_T^{miss}$ , multilepton+  $E_T^{miss}$ establish SUSY mass scale try to determine model parameters (difficult!)

August 28, 2006





# **SUSY Search at LHC**

**Example: discovery reach as function of luminosity and model parameters which fix the mass scale of SUSY parameters** 



achievable limits exploiting  $E_T^{miss}$ signatures requires very good understanding of detectors

Conclusion: LHC will eclipse today's limits on SUSY particles and parameters or discover SUSY if it exists at the TeV scale

**Experiments at proton colliders explore the highest energy frontier** for discoveries of new particles and phenomena for precision meaurements

**Conclusions** 

Standard Model is great, but cannot be the ultimate theory pp experiments are testing and challenging the model

Experiments at the Tevatron are collecting larger data samples LHC and the pp experiments ATLAS and CMS are will start next year to explore the TeV region

#### The LHC experiments will

further improve knowledge on W boson, top quarks, QCD will probe physics at the smallest distance scale will answer the question if there is a Higgs boson or not probe models like SUSY on the (multi-)TeV scale

Very exciting times are ahead of us! Come and join us now!

Questions & comments to Joachim.Mnich@desy.de