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Particle decays

ep, e* e, pp interactions
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Simulations in High Energy Physics

H. Jung (DESY)

@ Simulation:

Oxford advanced dictionary: simulate = pretend to be
e Simulation: why ?

Can't we just calculate things ????
@ Simulation: what ?

Detector response

Particle decays

ep, e* €, pp interactions

Economy

Life
@  Simulation: How-to ?
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When we use the word simulation, ws refer to any analytical method
meant to imitate a real-life system, especially when other analyses Risk Analysis
are too mathematically complex or too difficult to reproduce

Riat Anatveis
Without the ald of simulation, a spreadsheat model will only reveal a e

et Gario
single outcome, generally the most likely or average scenario. Shmlaton

Spreadsheet risk analysis uses both a spreadshest model and P
simulation to automatically analyze the effect of varying inputs on offoshs
outputs of the modeled system.

Risk Anatysis

One type of spreadsheet simulationis Monte Carlo
which randomly generates values for uncertain variables over Opémization
and over to simulate a model.

Time-serios
S

Unites Statss
Unitec Kingdom

Gormany

How did Monte Carlo simulation get its name?

Monte Carlo simulation was named for Monte Carlo, Monaco, where the primary
attractions are casinos containing games of chance. Games of chance such as

roulette wheels, dice, and slot machines, exhibit random behavior

The random behavior in games of chance is similar to how Monte Carlo
simulation selects variable values at random to simulate a model. When you roll
adie, you know that either a 1,2, 3, 4, 5, or 6 will come up, but you don't know
which for any particular roll. It's the same with the variables that have a known
es but an uncertain value for any particular time or event (2.g.
Interest rates, staffing needs, stock prices, inventory, phone calls per minute).
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Application in Nuclear Waste ...

Applied Intelligence: The Use of Monte Carlo Simulation...http://www.applied-intelligence.co.uk/Papers/Supercon

Home | Company | Tect ios | Clients| Projects | Links | Associates | Contact

Applied Intelligence

Business intelligence through knowledge technology
Case Study: The Use of Monte Carlo Simulation to
Optimise the Supercompaction Process at the Waste

Treatment Complex, Sellafield

First published inUnicom seminar on Al and Optimisation in Process Control(Heathrow) June
1996

ABSTRACT

Mathematical modelling and Monte Carlo simulation have been used to model the
supercompaction process at WT'C, BNFL Sellafield. A better understanding of the process was
achieved, and the algorithm initially specified to select drums for compression was found to hav
some surprising and undesirable effects. The application of statistical decision theory allowed
the development and testing of improved algorithms, which should result in major operational
cost. savings.
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Monte Carlo method Monte Carlo method

@ Monte Carlo method @ Monte Carlo method
o refers to any procedure that makes use of random numbers e refers to any procedure that makes use of random numbers
e uses probability statistics to solve the problem e uses probability statistics to solve the problem
@ Monte Carlo methods are used in: @ Monte Carlo methods are used in:
e Simulation of natural phenomena @ Simulation of natural phenomena
e Simulation of experimental apparatus e Simulation of experimental apparatus
e Numerical analysis e Numerical analysis
e Random number: e Random number:

one of them is 3
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Monte Carlo method

@ Monte Carlo method
e refers to any procedure that makes use of random numbers
@ uses probability statistics to solve the problem
@ Monte Carlo methods are used in:
@ Simulation of natural phenomena
@  Simulation of experimental apparatus
@ Numerical analysis
@ Random number:

one of them is 3

No such thing as a single random number
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Going out to Monte Carlo

@ Obtain true Random Numbers
from Casino in Monte Carlo
e Puhhh... Going out every night ...
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Monte Carlo method

@ Monte Carlo method
e refers to any procedure that makes use of random numbers
@ uses probability statistics to solve the problem
@ Monte Carlo methods are used in:
@  Simulation of natural phenomena
@  Simulation of experimental apparatus
@ Numerical analysis
@ Random number:

one of them is 3
No such thing as a single random number

A sequence of random numbers is a set of numbers that have nothing to
do with the other numbers in a sequence
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Random Numbers

@ In a uniform distribution of random numbers in [0,1] every number has the
same chance of showing up
@ Note that 0.000000001 is just as likely as 0.5

To obtain random numbers:
e Use some chaotic system like roulette, lotto, 6-49, ...
o Use a process, inherently random, like radioactive decay
o Tables of a few million truly random numbers exist
(....until a few years ago.....)
BUT not enough for most applications

it leads to irreproducible results, making debugging difficult....
% Develop Pseudo Random Number generators !!!!

»  Hooking up a random machine to a computer is NOT toooooo good, as
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Random Numbers

@ In a uniform distribution of random numbers in [0,1] every number has the
same chance of showing up
@ Not that 0.000000001 is just as likely as 0.5

To obtain random numbers:

e Use some chaotic system like roulette, lotto, 6-49, ...

e Use a process, inherently random, like radioactive decay

o Tables of a few million truly random numbers exist .....
BUT not enough for most applications

» Hooking up a random machine to a computer is NOT toooooo good, as
it leads to irreproducible results, making debugging difficult....

% Develop Pseudo Random Number generators !!!!

Pseudo means: Oxford Advanced Dict.: False
Quasi means: Oxford Advanced Dict.: almost
BUT here the meaning is different

H. Jung, Simulatiom in HEP,

True Random Numbers

s Random numbers from classical e Random numbers from quantum

physics: coin tossing
evolution of such a system can
be predicted, once the initial
condition is known... however it is
a chaotic process ... extremely
sensitive to initial conditions.
@ Truly Random numbers used for
@ Cryptography
Confidentiality
Authentication
@ Scientific Calculation
e Lotteries and gambling
do not allow to increase
chance of winning by havinga °
bias ... too bad
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physics: intrinsic random
photons on a semi-transparent
mirror

Photon source Semi-transparent mirror

~ ‘ ﬂ 50% il
> Q

Photon 50% < |

Single-photon detectors

--U"(‘ 4
Available and tested in MC
generator by last years summer
student
Generator is however very slow...

Quasi Random Numbers

mathematical randomness is not attainable in computer generated random
numbers
more important: assure that the “random” sequence has the necessary
properties to produce a desired result ... (hmmmm 1)

e examples:

e in multidimensional integration, each multi-dim point is considered
independently of the others, and the order in which they appear plays no
role !

e degree of fluctuations about uniformity: in many cases a “super-uniform”
distribution is more desirable than a truly random distribution with uniform
probability density !

use of Quasi Random Numbers might lead to faster convergence of the
integration .... but needs to be checked carefully ...

Important in
Monte Carlo integrations
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Pseudo Random Numbers

Pseudo Random Numbers
are a sequence of numbers generated by a computer algorithm, usually
uniform in the range [0,1]
more precisely: algo's generate integers between 0 and M, and then r =/ /M
A very early example: Middles Square (John van Neumann, 1946):
generate a sequence, start with a number of 10 digits, square it, then take
the middle 10 digits from the answer, as the next number etc.:
5772156649%= 33317792380594909291
Hmmmm, sequence is not random, since each number is determined from
the previous, but it appears to be random
this algorithm has problems .....
BUT a more complex algo does not necessarily lead to better random
sequences ...

Better us an algo that is well understood

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006
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Random Number generators

Compare random number
generators with physics process

y spectrum of electron
2 observe peaks
2 coming from physics ?

number of events
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study by B. Domnik (summerstudent 2005)

200

700

600

500

—— bad random number generator

I I I
01 02 03 04 05 0.6 07 O0E& 09
¥

Simulating Radioactive Decay

e radioactive decay is a truly random process

o dN=-Nadtie N=N, e

@ probability of decay is constant ... independent of the age of the nuclei:
probability that nucleus undergoes radioactive decay in time At is p:

p=0At(fora At < 1)
@ Problem:

consider a system initially having N, unstable nuclei.
How does the number of parent nuclei, N, change with time ?

e Algorithm:

LOOP from t=0 to t, step At

LOOP over each remaining parent nucleus

Decide if nucleus decays:
IF ( random # < @At ) then

reduce number of parents by 1

ENDIF
END LOOP over nuclei
Plot or record N vrs t
END LOOP over time
END
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Random Number generators

Compare random number
generators with physics process

y spectrum of electron

2 observe peaks

2 coming from physics ?
BUT coming from bad random
number generator

number of events

study by B. Domnik (summerstudent 2005)

200

300

400

300

100

a

true random number generator

—— bad random number generator

L L L I
01 02 03 04 G5 06 07 08 08
Y

From now on assume:
we have good random number generator
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The first simulation: radioactive decay

implement algo into a small program
show results after 3000 sec for:
N,=100,x = 0.01s"

At=1s
N,=5000, a=0.03s’
At=1s
algo:

alphal = 0.01

NO1 = 100

deltat = 1

do I=1,300

it =it + 1
do j = 1, NO1
x RN1
fr = deltat*alphal
if(x.1t.fr) then
reduce number of parents NO1
NO1 = NO1 - 1
endif
£i1l for each time it number NOI
call hfill(400,real(it+0.3),0,1.) !
enddo

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006
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The first simulation: radioactive decay

e implement algo into a small program
e show results after 3000 sec for:

=100 =
No= 100, x = 0.01 s 80 | 2,100, 0= 0.01 4000 N,=5000. 0= 0.03
At=1s oL
N,=5000, a=0.03s" w 2000
At=1s 55 |
@ MC experiment does not exactly . ) = . )
reproduce theory 0 100 200 3|DD o 100 200 3:]0
@ results from MC experiment show =z 10 T =z g
statistical fluctuations ... - 10
o as expected ........ 1 ot
L 10 %
®
4
10 0 I(‘JO 200 3?0 i 0 11‘10 2I‘]ﬂ 3:]0
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Monte Carlo technique: basics

° Law of large numbers
chose N numbers u, randomly, with probability density uniform in [a,b], evaluate
f(u) for each u; :

1 & 1t
2w - g [t

for large enough N Monte Carlo estimate of integral converges to correct
answer.
e Convergence
is given with a certain probability ...
THIS a mathematically serious and precise statement

Gambling in Monte Carlo is also serious and sophisticated
Some people say
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Monte Carlo technique: basics

° Law of large numbers
chose N numbers u, randomly, with probability density uniform in [a,b], evaluate
f(u) for each u, :

1< 1
NI - g [t

for large enough N Monte Carlo estimate of integral converges to correct
answer.
e Convergence
is given with a certain probability ...

THIS is a mathematically serious and
precise statement !!!!

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006 a0

Expectation values and variance

@ Expectation value (defined as the average or mean value of function f):
1t 1
Bif) = [ fwdG(w) = (bT / f(u)du) = %> )
a i=1

for uniformly distributed v in [a,b] then dG(u) = du/(b— a)
@ rules for expectation values:
Elcz + y| = cE[z] + Ey]
e Variance

b
vin = [ (7 - Blf)? do- (,,% JACORE) du)
@ rules for variance:
if x,y uncorrelated:  Viex +y] = *Vi]z] + V]y|

if x,y correlated
Viez +y] = *Vz] + VIy|+2E[(y — Ely]) (z — Elz])

H_Jung, Simulatiom in HEP, Summerstudent Lecture 2006 2



Central Limit Theorem

Central Limit Theorem

@ Central Limit Theorem
for large N the sum of independent
random variables is always normally
(Gaussian) distributed:
(- a>2]

1
f(I) - S\/ﬁ €Xp |:_ 282
e example: take sum of uniformly
distributed random numbers:
R, = Z?=1 Ri
E[R1] = [udu=1/2,
VIR = [(u—1/2)du =1/12
E[R,] =n/2
VIR, =n/12

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006

e Central Limit Theorem e for Qaussian with mean=0 and
for large N the sum of independent variance=1, take for n=12:
random variables is always normally R, —n/2
(Gaussian) distributed: N(0,1) — 2/712/
f@) = —ep |-CZ 2|

- 2

S 271' 23 015 - L5 015 | L

e example: take sum of uniformly o1 o
distributed random numbers:

n 0.05 0.05
Rn:Zi=1Ri # L P IR 8
E[Rl] — fudu — 1/27 S 25 0 25 5x 5 25 0 25 5
VIR = [(u—1/2)du=1/12 * N k

0.08 . R
E[Rn] = n/2 e 004 |
VI[R,] =n/12 oo 2
0.02
< 5 -2‘.5 ll.l 25 5 9 \‘5 25 0 25 §

Resumee: Monte Carlo technique

Monte Carlo: Buffons Needle - Hit & Miss

» Law of large numbers

N b
¥ 2 fw) > = [ s
=1 a

MC estimate converges to true integral

s Central limit theorem
MC estimate is asymptotically normally distributed
it approaches a Gaussian density

Vi/]

vN
with effective variance V/(f)
decrease o reduce V(f) or increase N
@ advantages for n-dimensional integral ...
i.e. phase space integrals 2 - nprocesses
is where other approaches tend to fail

~

o=

ER
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s Buffons needle (Buffon 1777) —~2
pattern of parallel lines with deos o ; 4
distance d,
randomly throw needle with length d
onto stripes, loop over ntrials
count hit, when needle crosses strip X=RN(1) * d
. . alpha = RN(2) *3.1415 * 2
count miss, if not y = d * abs (cos(alpha))
@ probability for hit is: if ((x+y) .gt. d) nhit = nhit + 1
endloop
dOOS(OL) _ OOS(O{) write ' pi = ', 2*ntrial/nhit
d
all angles are equally likely: trials ™ error
100 2.9850 0.2374
f"/ 2cos(a)da 2 1000 3.2733 0.0749
0 = 10000  3.1645 0.0237
7r/2 ™ 100000  3.1483 0.0075
X 1000000 3.1401 0.0024
http://www.angelfire.com/wa/hurben/buff.html 10000000 3.1422 0.0008
35 H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006



Buffons Needle: Crude Monte Carlo

e Buffons needle (Buffon 1777) is
essentially integration of

/2
/ cos(a)da
0

@ apply Law of large numbers:
trials

1< 1 [P
NI i [rea

=
s compare Hit & Miss with Integration 1000

10000
100000
1000000
@ 1st example of true Monte Carlo 10000000
experiment 100000000

@ equivalence of integration and MC
event generation

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006

0 MX[

m(hit&miss)

3.27869
3.36700
3.14218
3.13087
3.14127
3.14154
3.12174

m(integral)

3.12265
3.11833
3.15129
3.13416
3.14337
3.14168
3.14156

MC method: advantage of hit & miss

e integration = weighting events
large fluctuations from large weights
weights also to errors applied
difficult to apply further hadronization

real events all have weight = 1 | | |
e Hit & Miss method:

MC for function f(x):
get random number:
R1in (0,1)and R2in (0,1)
calculate x = R1
reject eventif: f <f R2

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006

Integration: Monte Carlo versus others

One dimensional quadrature

I= /f(x)dx = lezf(ml)

i=
@ Monte Carlo: Hit & Miss
w =1 and x, chosen randomly
e Trapezoidal Rule:
approximate integral in sub-interval
by area of trapezoid below (above)
curve
e Simpson quadrature
approximate by parabola

Trapezoid Rule

m

a) ay ay ay

Simpson Rule

parabola appros.

method | err (1d) | error

e Gauss quadrature
approximate by higher order
polynomial

MC n—1/2 n—1/2
Trapez —2 n=2/d
—a n—4/d

n
Simpson | n
n—2m+1 n—(2m-1)/d

Gauss

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006

MC method: advantage of hit & miss

@ integration « weighting events

large fluctuations from large weights

weights also to errors applied

difficult to apply further hadronization

real events all have weight = 1 | | |
e Hit & Miss method:

MC for function f(x):
get random number:
R1in (0,7)and R2in (0,1)
calculate x = R1
reject eventif: f <f  R2

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006

f(x)

40

20

0 0 0.20.40.60.8 1
X




MC method: advantage of hit & miss

integration = weighting events
large fluctuations from large weights
weights also to errors applied
difficult to apply further hadronization

f(x)

real events all have weight = 1 | | |
e Hit & Miss method:

40

20 |

MC for function f(x):
get random number: E ‘
R1in (0,7)and R2in (0,1) 0 0 0.20.40.60.8 1
calculate x = R1 X
reject eventif: f <f R2
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MC method: advantage of hit & miss

integration = weighting events
large fluctuations from large weights

weights also to errors applied
difficult to apply further hadronization

f(x)

real events all have weight = 1 | | |
e Hit & Miss method:

MC for function f(x):
get random number:
R1in (0,1)and R2in (0,1) 0 070.20.40.60.8 1

calculate x = R1 X
reject eventif: f <f R2

BUT: Hit & Miss method inefficient for peaked f(x)

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006

MC method: advantage of hit & miss

@ integration « weighting events

large fluctuations from large weights
weights also to errors applied
difficult to apply further hadronization

f(x)

real events all have weight = 1 | ' '
e Hit & Miss method:

MC for function f(x):
get random number:
R1in (0,1)and R2in (0,1) 0 070.20.40.60.8 1

calculate x = R1 X
reject eventif: f <f  R2

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006
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MC method: do even better ...

e Importance sampling

MC for function f(x)
approximate f(x) ~ g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):

/ g(z')dz' = Rl/ - g(z')dz’

Tmin Tmin

example:  f(z) = 1/2%7
g(z) =1/

R1
— Zmaz
T = Tmin - (zmm)

reject event if: f(x) < g(x) R2
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MC method: do even better ...

Importance sampling

MC for function f(x)
approximate f(x) ~ g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):

/ g(z')dz' = Rl/ " g(z')dz'

example: f(:lt) = 1/220'7
g(@) =1/z

R1

Tmin

reject event if: f(x) < g(x) R2
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f(x)

40

20

0 0 0.20.40.60.8 1
X

MC method: do even better ...

Importance sampling

MC for function f(x)
approximate f(x) ~ g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):

/ g(z')dz' = Rl/ " g(z')dz’

example:  f(z) = 1/z07
g(z)=1/z

R1
Lmaz

Tmin

reject event if: f(x) < g(x) R2
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f(x)

40 |
20
0 i = R
0 0.20.40.60.8 1

X

MC method: do even better ...

e Importance sampling

MC for function f(x)
approximate f(x) ~ g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):

/ g(z')dz' = Rl/ - g(z')dz’

example: f($) = 1/$0'7
g(@)=1/z

R1

Tmin

reject event if: f(x) < g(x) R2
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f(x)

® 0 0.20.4060.8 1
X

MC method: do even better ...

e Importance sampling

MC for function f(x)
approximate f(x) ~ g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):
/ g(z')dz' = Rl/ - g(z')dz’

example:  f(z) = 1/2%7
g(z) =1/

reject event if: f(x) < g(x) R2

° wow !l! very efficient even for peaked f(x)
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f(x)

40 |

20 |

40.60.8 1
X

0 0 0.20




Importance Sampling

e MC calculations most efficient for ————
small weight fluctuations: sample importan regions
f(x)dx = f(x) dG(x)/g(x)
@ chose point according to g(x)
instead of uniformly
e fis divided by g(x) = dG(x)/dx

@ generate x according to:
b T

R [ g(2)dz' = [ g(z")dz’
s relevafit variance is now V(t/g):
small if g(x) ~ f(x)
e how-to get g(x)
(1) g(x) is probability: g(x) > 0and [dG(x) = 1
(2) integral JdG(x) is known analytically
(3) G(x) can be inverted (solved for x)
(4) f(x)/g(x) is nearly constant, so that V(f/g)is small
compared to V/(f)

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006

Applications in High Energy Physics

Simulation of detector response

Apply MC method to e*e

what about hadronization

what about QCD radiation

going even further: initial state radiation
how-to do a DIS Monte Carlo event generator
some examples

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006

PART 2

Page 50

Application of MC method: Compton scattering

@ Compton scattering (O. Klein, Y. Nishima, Z. Physik, 52, 853 (1929))
energy of the final photon k"
k

k’ rrﬂ
N T /m (=) n ° £

e Differential cross section

do o2, (K\* Tk e
Q- 2m2 \ & R om

e angular distribution of the photon is:

N\ 3 N 2
0'(0, ¢)d¢9d¢ = ;@# ((%) + (%) — (%) sin? 0) sin 0dOde

s generate azimuthal ¢ independently: ¢ =2mR,
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Application of MC method: Compton scattering

@ togenerate 0, use approximation 150
for k> m, x-section peaked at small angles Er0.0005 Gev
(using u=(1-cos 0)): 100 |
2 /
o Qe k .
a d0d¢ = W ? sin 0d0d¢ 50

using k' = 1rg7m me )

0005 1152253
3]
2 -1
«a k 10000
c®dfdp = 2 1+ —u dud =1 GeV
v 2m2(+m) ¢ 8000 |\ ;

s use: 6000
Ry f§ (1+ &) du = [ (1+ Eu) ™ du’ 000
2000

° generate uwith u =Tt [(1 + 2%)}?‘2 — 1] o L

Ll

° weight by: =

H. Jung, Simulatiom in HEP, SUmmerstudent Lecture 2006

0051152253
9

Application of Simulation: Calibration of H1 Calorimeter

e simulated energy response in
calorimeter o
using GEANT package includir =~ ', £
full detector geometry and 02
material information
@ test beam measurement of ener 08
response 4
e test of understanding detector
performance

@ nice agreement within ~ 3%
e difference due to dead material i 15
front of detector 4

I I I I I | I
70 80 90
Vg LGV

=
8
w
g
.
&
&
a
8

b & Daten

B Sinmulation

g

10 20 30 40 50 60 0 80 %0
D [GEV]

J. Spiekermann, diploma 1994
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Application of MC method: photon transport in matter

Program for Compton scattering and similar programs for photo-effect and pair-
creation build program that simulates interactions of photons with matter
@ Algorithm
@ break path into small pieces
@ in each step, decide whether interaction (and which) takes place, given
the total cross section for each possible interaction
e from mean free path length, decide where interaction takes place
e simulate interaction: give photon new energy and angle, or produce e*e’
pair, etc ...
@ continue path with new parameters
e such program exist
s EGS (SLAC)
e GEANT (CERN)
e Detector simulation with programs for particle transport in matter
@ to study detector design
° to obtain a detailed simulation of the detector response
e to estimate efficiencies, bias, etc...
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MC event: hadron and detector level

Jet ] scattered €

p-remnant

e—beam oo T p-beam
27.5GeV > ———— 920 GeV

Vs ~318 GeV » x ~ 7. 10°at Q% = 4 Ge\”?
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From experiment to measurement

H. Jung, Simulatiom in HEP,

take data run MC generator

\ detailed detector simulation
- —

! compare detector level response: data with MC !

define visible x - section in kinematic variables
calculate factor C_ to correct from detector to hadron level

data data
daimd o dadet C with C o dz
= corr corr —
dzx dz dogey

visible x-section on hadron level

All measurements rely on proper MC's ”]

Constructing a MC for e*e: the simple case

o u
process: e'e’ du* u- >A1’W<
do o? '
=  _ T‘m (1+cos20)
dcos 0d¢p S after 100000 events

goal: generate 4-momenta of u's, Za000 £

need cm energy s, cos 6, ¢
3000
2000 |-

random number R1(0,1) ¢ = 2 r R1 1000
random number R2(0,1) cos 6 =-1 + 2 R2 o .

do

o for every R1, R2 use weight with Tow0d
Ccos

> repeat many times

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006

MC generators - different applications ...

calculate x-section of various processes = complicated integrals
multi - differential, in any variable

@ MC simulation of detector response

input: hadron level events - output: detector level events
Calorimeter ADC hits
Tracker hits

need knowledge of particle passage through matter, x-section ...
need knowledge of actual detector
x-section on parton level

e multipurpose MC event generators:

x-section on parton level

including multi-parton (initial & final state) radiation

remnant treatment (proton remnant, electron remnant)
hadronisation/fragmentation (more than simple fragmentation functions...)

e fixed order parton level ...... theorists like it

integration of multidimensional phase space

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006

Constructing a MC for e*e : the simple case

process: etedutu

do a? 9
99 _ Qem (4 0
doos0dg ~ ds (LT cos’0)

goal: generate 4-momenta of u's,

z

need cm energy s, cos 0, ¢ 40000 -
30000 |-
20000 |-

after 10° events

random number R1(0,1) ¢ = 2 r R1 10000 |~
random number R2(0,1)cos 0 = -1 + 2 R2 o .

do

for every R1, R2 use weight with —
dcosod¢p

repeat many times

H_Jung, Sim
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Example event: e‘e > u* u-

example from PYTHIA: Event listing

px Py

0.000  0.000
0.000  0.000

bz

30.000

-30.000

30.000
30.000

0.001
0.001

0.000  0.000
0.000  0.000
0.143  0.040
0.000  0.000
0.143  0.040

-9.510  1.741
9.653  -1.700

30.000

-30.000

26.460

-29.998

-3.539
24.722

-28.261

30.000
30.000
26.460
29.998
56.458
26.546
29.913

0.000
0.000
0.000
0.000

56.347
0.106
0.106

I particle/jet Ks KE orig
21 EER
21 oo
21 FE
21 o2
21 FER
21 e
21 23 0
21 137
21 137
11 23 7

1 2 3
T 138
1 139

0.143  0.040
-0.143  -0.040
-9.510  1.741
9.653  -1.700

-3.539
3.539
24.722

-28.261

56.458

3.542
26.546
29.913

56.347
0.000
0.106
0.106

L0 2 2 g
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0.000  0.000

technicalities/advantages
can work in any frame
Lorentz-boost 4-vectors back and forth
can calculate any kinematic variable
history of event process

0.000

60.000

60.000

eh w3

Constructing a MC for ete~ — qq

process ete™ — qq

2
do as,

dcos 0d¢ ~ 4s

(1+ cos? 0)

generate scattering as for e*e »u* u-

BUT what about fragmentation/hadronization ???

use concept of local parton-hadron duality

linear confinement potential: V(r) ~ -1/r + kr

with k ~ 1 GeV/fm

qq connected via color flux tube of transverse size of hadrons (~1 fm)
color tube: uniform along its length = linearly rising potential

-> Lund string fragmentation
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Constructing a MC for ee~ — qq

s process ete™ — q7
do o?

[ — < { ) 1 2 0

doos0dg — ds (LT cos’0)

@ generate scattering as for e*e »u* u-

* BUT what about fragmentation/hadronization ???
@ use concept of local parton-hadron duality

Different approaches to fragmentation/hadronization:
=» independent fragmentation

=» string fragmentation (Lund Model)

=> cluster fragmentation (HERWIG model)
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Lund string fragmentation

@ ina color neutral qg-pair, a color force is
created in between

@ color lines of the force are concentrated in a
narrow tube connecting q and g, with a
string tension of:
k~1GeV/fm~0.2 GeV?

@ asgand qare moving apart in qq rest

frame, they are de-accelerated by string L
tension, accelerated back etc ... (periodic
oscillation)

@ viewed in a moving system, the string is
boosted
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Lund string fragmentation (cont'd)

color force materialize a massless qq pair on a point on the string
string separates into two independent (color neutral) strings
analogy with electric filed coupled
to particles suggest:
dP

&P

—ntm’

K

... tunneling probability through potential
barrier
production of different flavor in hadronization

2
Pocexp( —rm ) *
K
with m, = m, =0, m=0.25GeV, m_=1,2 GeV

ud:sic=1:1:0.37:107°
typical example of Monte Carlo approach
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[—Iadronization: particle masses and decays

particle masses

2 taken from PDG, where known, otherwise from constituent masses

particle widths

2 in hard scattering production process short lived particles (p,A) have

nominal mass, without mass broadening

2 in hadronization use Breit-Wigner:

P(m)dm m= o T T4
lifetimes

Fragmentation in the String Model

hadronization: iterative process o
string breaks in qq pairs (still respecting color flow) longitudinal frag.
select transverse motion with m=m,__ (and flavor)

2 2
P ~cxp (7 7”:"') = cxp <7#> cxp (7%)

suppression of heavy quark production
u:d:s:c~1:1:1:037:10"
actually leave it as a free parameter

longitudinal fragmentation
symmetric fragmentation function (from either q or q)
f(z) ~z'(1-zf exp(-b n?,/z)
harder spectrum for heavy quarks

start fromqorq

repeat until cutoff is reached

heavy use of random numbers and importance sampling method

transverse frag.
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Color Flow in String Fragmentation

quarks carry color
anti-quarks carry anticolor
gluons carry color — anticolor
@ connect to color singlet systems

2 related to widths ... but for practical purpose separated
2> Pf(r)dr ~exp (-t/t,) dr
2 calculate new vertex position v'= v + T p/m
e decays
2 taken from PDG, where known
2 assume momentum distribution given by phase space only
> exceptions, like w,» — mTw- 7w’ or D — Km, D* = Knm
and some semileptonic decays use matrix elements
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Cluster Fragmentation

@ Pre-confinement of color
e  Gluonsplit g — qq

String Fragmentation Cluster Fragmentation

e
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Doing things better: e*e >qqg

N
g ¢
*  process e'e ¥qqg >«v7vw
e full matrix element calculation g
@ watch out color flow !!!
@ gluons act as kicks on strings
I particle/jet KS KF orig p_x by bz B n c(15)
1rert 21 -1 0 0.000  0.000 30.000 30.000  0.001 (L6)
2 et 21 11 o 0.000 0.000 -30.000 30.000 o0.001 € (1S (LD &
207
21 11 1 0.000  0.000 29.699 29.699  0.000 ¥ 2(18)
21 11 2 -1.319 -1.236 -26.950 27.011 0.000
21 23 0 -1.318  -1.236  2.748 56.710 56.614  _ M 2(19)
21 4 7 -15.986 16.072 18.293 29.167  1.500 & (2) 2(20)
21 4 7 14.667 -17.308 -15.545 27.542 1.500 _ (,‘1)
e
1 22 2 1.320 1.236 2.744 3.286 0.000
A 12 4 8 -11.291 11.550 13.219 20.926 1.500 . .
Toaz a0 s sz s s sss oo @ MOre large p, emissions
I 12 21 8 0.279 0.951 0.179 1.007 0.000 t
T 12 21 8 0.122 0.178  -0.505 0.550 0.000 @
FRE AR R e e (R P R not all covered by fixed
I 12 21 9 0.093 0.746 0.364 0.835 0.000 H
Il m 5 aam 67 66 12.ss o000 order calculations
22 (cbar) v 11 4 9 5.754 8.971 8.335 13.613 1.500

@ doing much better
needed
2 parton shower approach
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Example event e*e > qq

e example from PYTHIA Monte Carlo generator including hadronization

1 particle/jet ks KF orig  p.x by bz E
1 te+! 21 <11 0 0.000  0.000 30.000 30.000  0.001
2 te-t 21 11 0 0.000  0.000 -30.000 30.000  0.001
5 te+! 21 <11 3 0.018  0.040  0.702  0.703  0.000
6 le-t 21 11 4 0.000  0.000 -29.998 29.998  0.000

10 (20) 11 23 7 0.018  0.040 -29.297 30.701  9.180

11 gamma 1 22 1 -0.018 -0.040 29.298 29.298  0.000

15 (c) A 12 4 10 -1.950 -3.529 -19.752 20.215  1.500

16 (cbar) Vv 11 “4 10 1.967  3.569 -9.545 10.486  1.500

17 (string) 11 92 15  0.018  0.040 -29.297 30.701  9.180

18 (D0) 11 421 17 -0.455  -1.495 -9.002  9.325  1.865

19 (omega) 11 223 17 -0.300 -0.076 -3.228  3.338  0.793

20 pi+ 1 211 17  -0.168  -0.172 -0.861  0.904  0.140

21 (rho-) 11 -213 17 -0.114  -0.513  -4.992  5.106  0.932

22 (omega) 11 223 17 -0.173  0.118 -2.022  2.180  0.789

23 pi+ 1 211 17 0.226  0.925 -2.593  2.766  0.140

24 (D*-) 11 -413 17 1.001  1.253  -6.599  7.082  2.010

25 e+ 1 <11 18 -0.191  0.241  -1.261  1.297  0.001

26 nu_e 1 12 18  -0.154  -0.789  -4.174  4.250  0.000

53 pi 1 -211 47 0.318  -0.061 -1.293  1.340  0.140

sum:  0.00 0.000  0.000  0.000 60.000 60.000
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()¢ (1) < (15

g2 T (16

apply fragmentation
directly to parton

all covered by
hadronization .... soft

where is QCD ?2??

Gluons in string fragmentation

process e*e »qqg

T,
‘Ti
) fiN/ddp

I
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watch out color flow !!!
gluons act as kicks on strings
string effect seen in experiment

(U o, (V) N

o

=}
b

o

2

N {a}

Jet 1
\

.y

TPC (PEP) H. Aihara, ZPC 28, 31 (1985)

Jet 2
Jet 3 Jat }f

'S W

(s}

T
60

T i T
20 180 240 300 360
&b (degrees}



Approximations to higher orders: parton showers DGLAP equation

Approximation to higher orders..... e o dz o r
¢ s differential form o= £ (g — 2223 pP (2 (_ )
fragmentation functions A qaqf( »a) z 2m +(2) f 21
- @ modified differential form using “Sudakov form factor”
parton density functions — Ay(do,q) = exp (—073 [ fZJ tflq P(z )
| 9 f(z,q) _/d_Z% P(z) f(f q)
- 99 A(g, 90) z 2m Ay(g,q0) * \2’

3 ° integral form
—OE

7

e since alphas is not small, higher orders contributions are important dz dq' , ~ x
s Approximations: f(z,q9) = fo(z,q)As(g,90) + = 7 -As(d',90)P(2) f (;ﬂ])
DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi )
BFKL (Balitski, Fadin, Kuraev, Lipatov) o no-branching probability form g to g
CCFM (Catani, Ciafaloni, Fiorani, Marchesini) 0
Sudakov form factor: all loop resum... Applying DGLAP to DIS data ...
= = HERAF, . HERA ¥,
999 spltingFet Pz) = —— 4+ 2= R R 2 g | e [ wsent | et
1-z =z & i sy e s \ \ S.\
@ Sudakov form factor .... all loop resummation = oK f somn e e | L Y
dq Qs . ,,r'/// 0013 -:.:::s\:sm7 2*\ 856V [ 10Gev? 12 Gev? 15Gev?
As = exp ( /dz/ P( )) B // . \ \“'\ -\\ \
dg s = 1y dq s - 2 3 . ‘j::; i . -~ | -~ ~
— _ 2 2(_ @ Qs A P hee T meer || men [% e
Ag = 1+( /dz/ p 2ﬂ_P(z)) + 2!( /dz/ 7 27|_P(z)) i e . . \H\ \\\ x\ \\
j 1 Cain R ~ |
g 2 ) 45GeV [ ) @GV [ b M0GeVE [ 4 90Gev
o ] \ \ \
+ + + o + e et s . \\ .\\ ' \\
iy Ay —sagevew8jaly 8 g =008
S et g PE— LAl
| e e s 20 | Gy \oew® | g e '
- D S \\ \ = zmwmoomn
T ' ., S o
5 dq Qg ~ 1 dq (6 2 s yonn s u—e—Ba_e 206 Wl S By
P(2) [1 - / / B Py + 1 #LRPE)) - S ————— | e
q 2w 21 QUGeV?) *
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Solving DGLAP equations ...

Solving integral equations

o Different methods to solve integro-differential equations °

° brute-force (BF) method . miyama, s. kumano cpe 94 (1996) 185)

df (z T)m — Z)m
o) _ 1O =T [ 51z = 3 f(@) s

Laguerre method (S. Kumano J.T. Londergan CPC 69 (1992) 373, and L. Schoeffel Nucl.Instrum.Meth. A423:439-445,1999)
Mellin transforms (M. Glueck, E. Reya, A. Vogt Z. Phys. C48 (1990) 471)

QCDNUM: calculation in a gnd in x,02 SPACE (M. Botie EurPhys.J. C14 (2000) 285-297)
CTEQ evolution program in x,Q2 space: nupimww.phys psu.edu-cteq/

QCDFIT program in x,02 SPACE (c. Pascaud, F. Zomer, LAL preprint LAL/94-02, H1-09/94-404,H1-09/94-376)
MC method using Markov chains (s. sadach, M. Skezypek hep-piosoa20s)

Monte Carlo method from iterative procedure

o Dbrute-force method and MC method are best suited for detailed studies of
branching processes !!!
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b
Integral equation of Fredholm type: o
solve it by iteration (Neumann series): () = f(@) + A/a K(z,y)é(v)dy
$o(z) = flx)
b
@) = 1@+ [ Ky
b b b
@) = 1@+ [ K@i +3 [ [ KK w) )
bu(@) = D ANui(z)
i=0
uo(z) = f(2)
b
w@ = [ Kenfeaay
b b
un@) = [ [ K@K Ky ) dy

with

H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006

n
the solution:  ¢(z) = 11_131 an(z) = 1311 ZAi“i(m)
n oo n oo
i=0

7

Solution of DGLAP equation

DGLAP re-sums leading logs...

f@n) = fawdi0+ [ £ [ 5 20 pe)r (2¢)

@ solve integral equation via explicit iteration:

from t'tot 5 , from t,to t'
f(z,to) At) w/o branching [ branching at | w/o branching

fo(:ﬂ,t) =
A = fewa0+ [ T2 [ Lo/ 0
z=xf%, P(z)
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f(z,

£) = f(z,t0)As t)+/d2/ ﬁ((f, Pe)f (2.1

solve integral equation via iteration:

from t'tot (Branching ai 7 ] from t,to t'
fo@t) = F@t)Al) e ool

dt' A(t)

A = s@wan+ [ 20 [Loe) 6 0ar)

= f(@,t0)AQ) +log %A®A(t)f(m/z,to)

falw,t) = f(w,to)A(t)+10g%A®A(t)f(m/z,to)+

% log? tiA ® A®A®)f(z)2t0)
0

fat) = Jm faet) = Jm 3 Liog” (ti) A" @ AW (z/2 to)

DGLAP re-sums logt to all orders !N
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Parton showers to solve DGLAP evolution

e for fixed x and Q¥ chains with different branchings contribute
e jterative procedure, spacelike parton showering

R PR R
w0ttt wh w® o’ U U U whow? et
X

f(z,t):%T/

(Trstr) + folz,to)As(t)
k=1
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Parton Showers for the final state

timelike parton shower evolution
» starting with hard scattering >~\

» select g, from Sudakov form factor - e

s select z, from splitting function

s select g,from Sudakov form factor

s select z,from splitting function ~ — Ao
s stop evolution if g,<q, >w::f\g\
Zy4q3
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Parton showers for the initial state

spacelike (Q<0) parton shower evolution

starting from hadron (fwd evolution) %o
or from hard scattering (bwd evolution)

select g, from Sudakov form factor %o

select z, from splitting function

select g,from Sudakov form factor

select z, from splitting function
stop evolution if g,>Q, .,
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Parton Shower

Evolution equation with Sudakov form factor recovers exactly evolution
equation (with  prescription)
Sudakov form factor particularly suited form Monte Carlo approach
Sudakov form factor
= gives probability for no-branching between g, and g
= sums virtual contributions to all orders (via unitarity)
=> virtual (parton loop) and
= real (non-resolvable) parton emissions
need to specify scale of hard process (matrix element) Q ~ p,
need to specify cutoff scale Q, ~ 1 GeV
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The DIS process ep - epX

s cross section zle—eX) _ %2- ((1 —y+ %) FY(z,Q%) - 1’2—2Ff(za QZ))

dy dQ? S
with Ff(2,Q%) =3 s €% (zgs (2, Q%) + g5 (2,Q%))
e generate y with g(y)=1/y, and Q2 with g(Q?)=1/C¥¢: n
Y = Ymin (y?]:l—“j) )
e calculate x-section with:

do
dy 47 2 2
alep— €'X) = = Zg(y 8] /g(y)dy/g(Q )dQ

do Ymazx 3naz
olep— €X)= Zy,Qld dQ2 ( )log(Qz‘ )

Ymin

e calculate 4-momenta of scattered electron and virtual photon
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Where is the problem ?

) TERAT,

Fy~o(y'p

ey

1000

F;log,

-

-
.
<.

-

.

1 10 IS 10° 10! 10*
QUGeVY)

QPM process BGF O(as) process  O(a?) process
total x-section heavy quarks (charm & bottom)
2-jet 3-jet
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Where is the problem ?

= N
\\\\\\§§
-
iﬁ&

. = 4

\\\‘

QPM process BGF O(axy) process

2-jet
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o(

a?) process
total x-section heavy quarks (charm & bottom)

3-jet

Where is the problem: hadronic final state

F2 ~ U(“/ P)

TERAT,

Filog,,(x)

A5075
® TrUS 00

el energy seale ncertaiuly

dofdAd?(ep— e+ 4ij+X) (nb/rad )

10°
10
1
4|
g I —
PR e W Ag¥(rad.)
Q(CeV)
QPM process BGF O(ais) process  (O(a?) process
total x-section heavy quarks (charm & bottom)

2-jet
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3-jet




Hadronic final state: Di-jet rates

Matching of ME - PS

Gou | ® Hidea
":gmz o s S|
& g4 — RAPGAP-NLO H
008 o izl
0.06
0.04
(1.7 i—
o |

e Roua | ® tidam
ooz b

01
B 0.08

0.06

004
(i | EE—
[

:

10 107
s (2+remnant) jets in DIS for Q° > 5 GeV?, p,**> 5 GeV
s O(as) processes not enough
2 need O(a?) or resolved virtual photon contributions
2 or something new ???
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study by M. Deak (summerstudent 2005)

e Approximation to higher orders.....
@ using initial and final state radiation
according to DGLAP
@ ME sets maximum scale for parton
showers

Where is the problem: hadronic final state

TEEYY

E

processes of O > a§ have not yet been calculated ...

interesting to go closer to outgoing proton remnant
forward jets !l
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e check sensitivity on particular choice
g 10
= gF
3 I
= r
S
S [ — pteut =2.5 GeV
= wffs  =m=-ptoat=3 GeV
[ - pteat =4 GeV
s - pteat =5 GeV
O:.\H.‘\‘..‘\.
4 0 ]
7(Ko)
89 H. Jung, Simulatiom in HEP, Summerstudent Lecture 2006 9%
Hadronic final state: Energy flow
5, pe T [aeraw
¥ dirction  p—dircction ‘,}g 25[ T EAReape
-— > 3* 21 v F {
< 4
z r

e Etflowin DIS at small x and forward
angle (p-direction):
2 O(as) processes not enough

051 ks
L ‘5 2‘5 0 25 5 b-5 25 0 25 5
s need O(a?) or resolved virtual photon contributions n
@ or something new ???
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Where is the problem: hadronic final state

H1 forward jet data

i) Hi1
< 1000 ..
et %L E scale uncert
_ém — NLO DISENT 143,
— 0.50, (<hy <24y ¢
© PDF uncert.
=
_e  --- LODISENT
500 - 143y

0.001 0.002 0.003 0.004

xBj

processes of O > a§ have not yet been calculated ...
interesting to go closer to outgoing proton remnant
forward jets !l
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Parton evolution: gluon density

e Gluon splitting and evolution ‘—Lll\"‘ti

T
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Parton Distribution Functions

. E=—- HI1PDF 2000
@ number of gluons in long. phase

Q=10 GeV*
space dz/z : xzg(z,p?)dz/x “
@ occupation area:
nr of gluons x (trans size)?

I

1
2
9(z,p*)—
U2

7

Gt
Ny
S

@ saturation starts when: *—

Qs (NQ)

dz
i ag(eit) G > o

gluon density is very large:~ 90 or 45 Gluons ' ' ' '
@ with R ~ 1 GeV'we obtain:
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Parton evolution: gluon density

@ Gluon splitting and evolution ‘—"‘1\’57

@ High density of gluons
= overlapping gluons
2 recombination YT
2 multiple scatterings
2 diffraction !!!!

@ evolution equation including

recombination effects:

TR

TYVVY

¥ ™

1 AERE " EERARE

TS T TV YT

F@ k) = 1K) + K ® f = K @

TEEY

] GribovLevinRyskin equation (Phys.Rep. 100 1
(1983))

° BalitskyKovchegov equation  (NPB 463, 99
(1996), PRD 60 (1999) 034008, D62 (2000)
074018)

TEEWAW

IAEE" RRZRR AR AL
YT LY YTy Ty
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forward jet production and diffraction

evolution
from large
to small x

forward® jet xje[la:ge
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@ DIS and forward jet:
1.7 < fjer < 2.8
Tjer > 0.035

2
Pt jet
0.5 < 7]2 5

o(twd jet)/o(DIS) ~ 1%

Rapidity Gaps during Hadronization

@ assume a statistical distribution of
particles, uniform in rapidity:
dN

an "¢

e all correlations between particles
are local in rapidity

= probability of rapidity gap of size An
is:

P~ eiA" _— 1|

2 coming from Poisson distribution

2 Hadronization produces
exponentially suppressed rap-gap
distributions
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4

-

&
=
o 10
>
[

forward jet production and diffraction

Ky small

evolution
from large
to small x

------- “forward® jet xje[]a[ge

rapidity gap  An

@ DIS and forward jet:
1.7 <njer < 2.8
Tjer > 0.035

"2

0.5 < Pset

o(twd jet)/o(DIS) ~ 1%

<5

e indiffraction: forward jet

close to rapidity gap
o(diff dijet)/o(DIS) ~ 1%

understand radiation close to proton
and radiation close to rapidity gap

is DGLAP parton radiation enough ?
or is BFKL or CCFM needed ?
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Rapidity Gap Events: measurements

L Bun €480 Ereok 59975 Cimse: 330 11 56 3 Bats 137013
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Events
=
]

desy 94-133




Rapidity Gap Events

H1 Collaboration, desy 94-133

B 4B Bt SSS Oimemc 5 1011 86 8 et 101504

“
Q10 L
e
Ll
® H dalc
----- DIS
10't — RAPGAP

— RAPGAP +DIS

]
[ |-

s (Re)Discoveries at HERA
... in 1994 .
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Underlying event — Multiple Interaction]

e Basic partonic perturbative cross section

2 2
Ohard (pl i ) = / —dpL
- P min dpi

2 diverges faster than 1/pimin @ Pimn —0 and exceeds
eventually total inelastic (non-diffractive) cross section

0o 4 s 6
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Multiple Parton Interactions in pp

from R. Field

Multiple Parton Interactions

Outgoing Par ton

AntiProton

Underlying Event Underlying Event

Outgoing Parton Outgoing Parton

What is the underlying event (UE), multiple parton interactions (MI)?
2 Everything, except the LO process we're currently interested in

@ parton showers

e additional remnant — remnant interactions
X NOT pile-up events (luminosity dependent)
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Multiple Interactions at HERA

B 14 -

g

E 2l H1 o dato

= ——— FHOJET

= 1 = .

:: FYTHIA mia /
=

I

K

, - FYTHIA T~
08 ® ———=min. bics
06
&
04 *
02 -
ol 111y
0 02 04 06 08 1

photoproduction is effectively hadron-hadron production...
Test and understand multiple interactions at HERA !!!
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Underlying event and jets

P. Starovoitov, T. Carli

SHERPA: Er > 100GeV,|n| <5

Hard Scale, HS+UE, Difference

g sn;— ti
3 uf 3
.iIL.up— E é-‘
2 aoé— "5\
Zg sof- z
= ub <
105—
-4 I1 0I ll 4 200 400 600 9001000 1200 1400 1600 1800
et E,, GeV
i ~109 1
s« UE contrlbutgs . 10 % to Jets, evgn at.large E Remember-
s UE contribution is eta dependent (in this model) !l |1 o,
* need reliable model for subtraction !122!!! diffraction at
1. ding, Smulatom inHE, SummersudentLocturs 2005 HERA!INI
Conclusion

Monte Carlo event generators are needed to calculate multi-parton cross
sections
Monte Carlo method is a well defined procedure
hadronization is needed to compare with measurements
parton shower (leading log) approach is needed, hadronziation not enough
MC approach extended from simple e+e- processes to
ep processes
pp processes
and heavy lon processes
proper Monte Carlos are essential for any measurement

Monte Carlo event generators
contain all our physics
knowledge !!!!!
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Multiple Interactions and Diffraction

{vm) ntegrated ghion

relation of multiple interactions — saturation - diffraction ?

Multiple Interactions Diffraction

diffraction
color singlet

o integrated gluon
i b (un) integrated glue:
9 E
f——f— £
9 r
» S R | ALY 2
P 4ARE AP AR h
'
1
1
1
]
'
1
1

Same diagrams — different color flow ....
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List of available MC program

HERA Monte Carlo workshop: www.desy.de/~heramc
ARIADNE
A program for simulation of QCD cascades implementing the color dipole model
AROMA
Heavy quark production in boson-gluon fusion using full electroweak LO cross-sections (with
quark masses) in ep collisions, DIS and photoproduction. Parton showers and Lund
hadronization gives full events.
CASCADE
is a full hadron level Monte Carlo generator for $ep$ and $p\bar{p}$scattering at small $x$ build
according to the CCFM evolution equation. It is applicable in $ep$ to photoproduction and
DIS, and for heavy quark production as well as inelastic $J/\psi$.
HERWIG
General purpose generator for Hadron Emission Reactions With Interfering Gluons; based on
matrix elements, parton showers including color coherence within and between jets, and a
cluster model for hadronization.
JETSET
The Lund string model for hadronization of parton systems.
LDCMC
A program which implements the Linked Dipole Chain (LDC) model for deeply inelastic
scattering within the framework of ARIADNE. The LDC model is a reformulation of the
CCFM model.
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List of available MC program

LEPTO
Deep inelastic lepton-nucleon scattering based on LO electroweak cross sections (incl. lepton
polarization), first order QCD matrix elements, parton showers and Lund hadronization
giving complete events. Soft color interaction model gives rapidity gap events.
PHOJET
Multi-particle production in high energy hadron-hadron, photon-hadron, and photon-photon
interactions (hadron = proton, antiproton, neutron, or pion).
POMPYT
Diffractive hard scattering in $p\bar{p}$, $\gamma-p$ and $ep$-collisions, based on pomeron
flux and pomeron parton densities (several options included). Also pion exchange is
included. Parton showers and Lund hadronization to give complete events.
PYTHIA
General purpose generator for $e*+e”-$, $p\bar{p}$ and $ep$-interactions, based on LO matrix
elements, parton showers and Lund hadronization.
RAPGAP
A full Monte Carlo suited to describe Deep Inelastic Scattering, including diffractive DIS and LO
direct and resolved processes. Also applicable for $\gamma$-production and partially for
$p\bar{p}$ scattering.
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General literature

e Many new books are available in DESY library NEW ... ask at the desk there ...

@  Statistische und numerische Methoden der Datenanalyse
V. Blobel & E. Lohrmann
e STATISTICAL DATA ANALYSIS. Glen Cowan.
e Particle Data Book S. Eidelman et al., Physics Letters B592, 1 (2004)
(http://pdg.Ibl.gov/)

e Applications of pQCD R.D. Field acdison wesiey 1589

@ Collider Physics V.D. Barger & R.J.N. Phillips addison-wesley 1987
@ Deep Inelastic Scattering. R. Devenish & A. Cooper-Sarkar, oxiord2

@ Handbook of pQCD G. Sterman et al

@ Quarks and Leptons, F. Halzen & A.D. Martin, s wiey 1984

e QCD and collider physics R.K. Ellis & W.J. Stirling & B.R. Webber camoridge 1996
@ QCD: High energy experiments and theory G. Dissertori,|. Knowles, M. Schmelling oxford 2003
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RAPGAP manual
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CASCADE manual
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@ V.Barger and R. J.N. Phillips
Collider Physics
Addison-Wesley Publishing Comp. (1987)
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