Introduction to Particle Accelerators

Winfried Decking, DESY based on Lecture by Bernhard Holzer, DESY DESY Summer Student Lectures 2006

I) Introduction historical development & first principles components of a typical accelerator

II) The state of the art in high energy machines: The synchrotron: linear beam optics colliding beams, luminosity synchrotron radiation

Introduction to Particle Accelerators

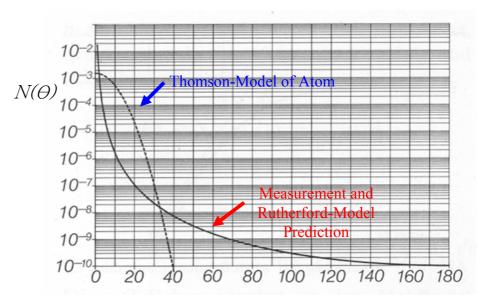
Historical note:

... the first steps in particle physics

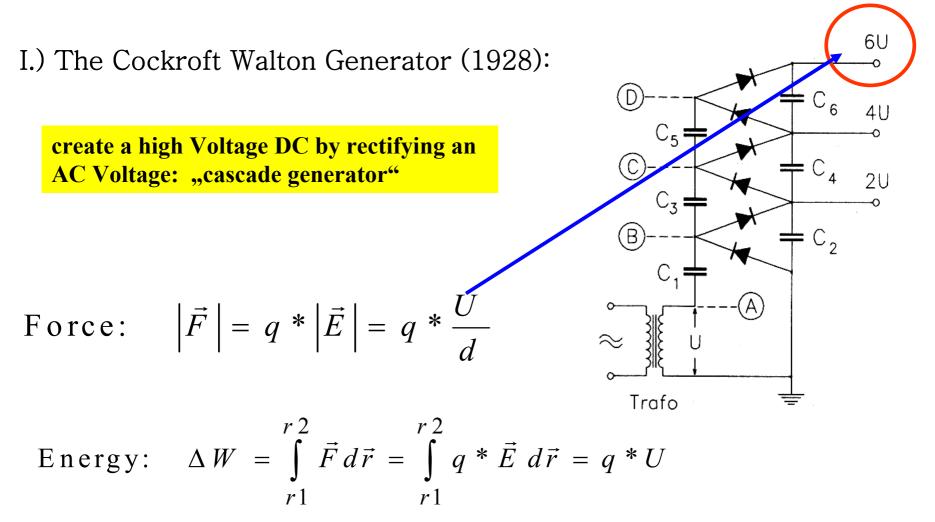
Rutherford Scattering, 1906...1913

Using radioactive particle sources: α-particles of some MeV energy

$$N(\theta) = \frac{N_i nt Z^2 e^4}{(8\pi\varepsilon_0)^2 r^2 K^2} * \frac{1}{\sin^4(\theta/2)}$$



Electrostatic Machines

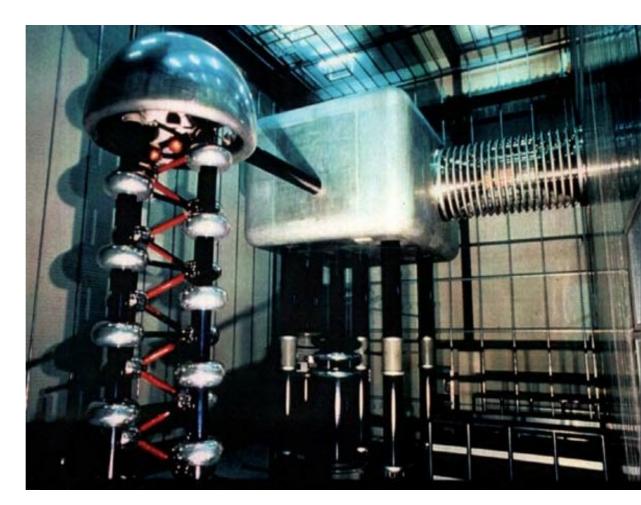


usefull energy unit: "eV" ...

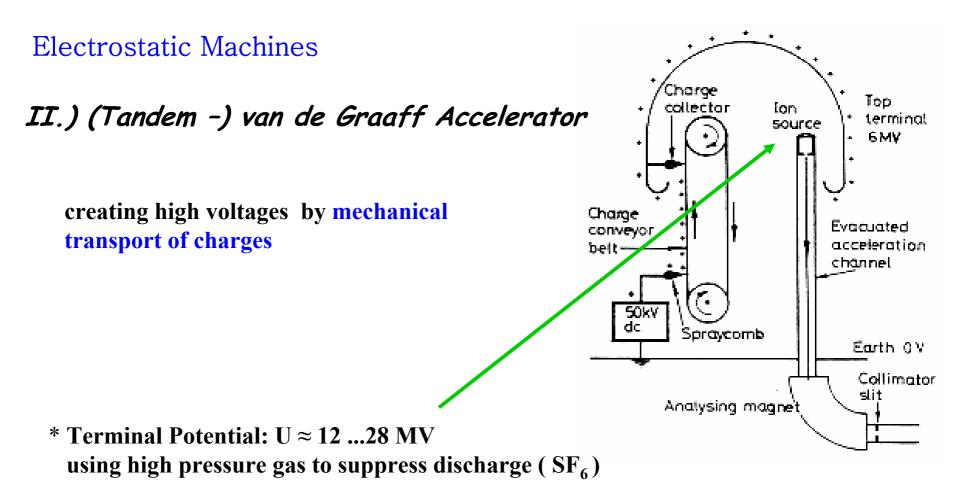
 $...1 eV = 1.6*10^{-19} J$

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

Particle source: Hydrogen discharge tube on a 400 kV levelAccelerator:evacuated glas tubeTarget:Li-Foil on earth potential



Example: Pre-accelerator for Protons at PSI (Villingen)



Problems: * Particle energy limited by high voltage discharges * high voltage can only be applied once per particle or twice ? * The "Tandem principle": Apply the accelerating voltage twice by working with negative ions (e.g. H⁻) and stripping the electrons in the centre of the structure

Example for such a "steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

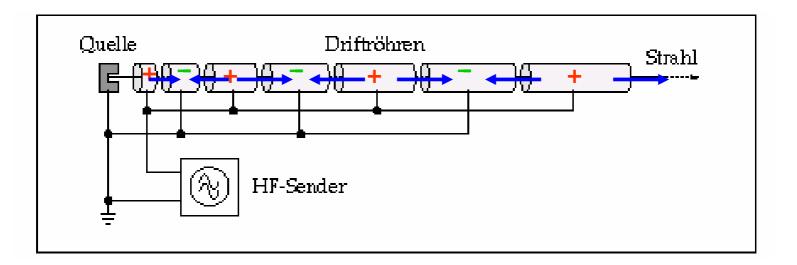
And the inside of such an "steam engine"

mechanical transport of charge using glas fiber belt

Linear Accelerators

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam

schematic Layout:



***** acceleration of the proton in the first gap

* voltage has to be "flipped" to get the right sign in the second gap → RF voltage
 → shield the particle in drift tubes during the negative half wave of the RF voltage

<u>Beam Energy I:</u> Acceleration in the Wideroe Structure

1.) Energy gained after *n* acceleration gaps

$$E_n = n * q * U_0 * \sin \psi_s$$

- *n* number of gaps between the drift tubes
- q charge of the particle
- U_{θ} Peak voltage of the RF System
- Ψ_S synchronous phase of the particle

2.) kinetic energy of the particles

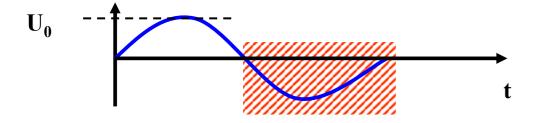
$$E_n = \frac{1}{2}m * v_n^2$$

valid for non relativistic particles ...

velocity of the particle (from (1) and (2))

$$v_n = \sqrt{\frac{2E_n}{m}} = \sqrt{\frac{2*n*q*U_0*\sin\psi_S}{m}}$$

3.) shielding of the particles during the negative half wave of the RF



Time span of the negative half wave: $\tau_{RF}/2$

Length of the n-th drift tube:

$$l_n = v_n * \frac{\tau_{RF}}{2} = v_n * \frac{1}{2v_{RF}}$$

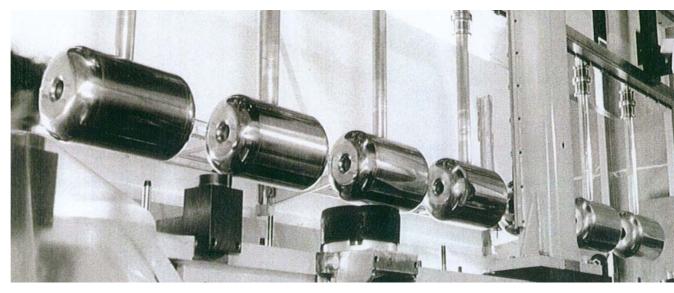
! high RF frequencies make small accelerators

length of the *n-th* drift tube ... or ... distance between two accelerating gaps:

$$l_n = \frac{1}{v_{RF}} \sqrt{\frac{n * q * U_0 * \sin \psi_S}{2m}}$$

Example: DESY Accelerating structure of the Proton Linac

$$E_{total} = 988 MeV$$



 $E_{kin} = E_{total} - m_0 c^2$

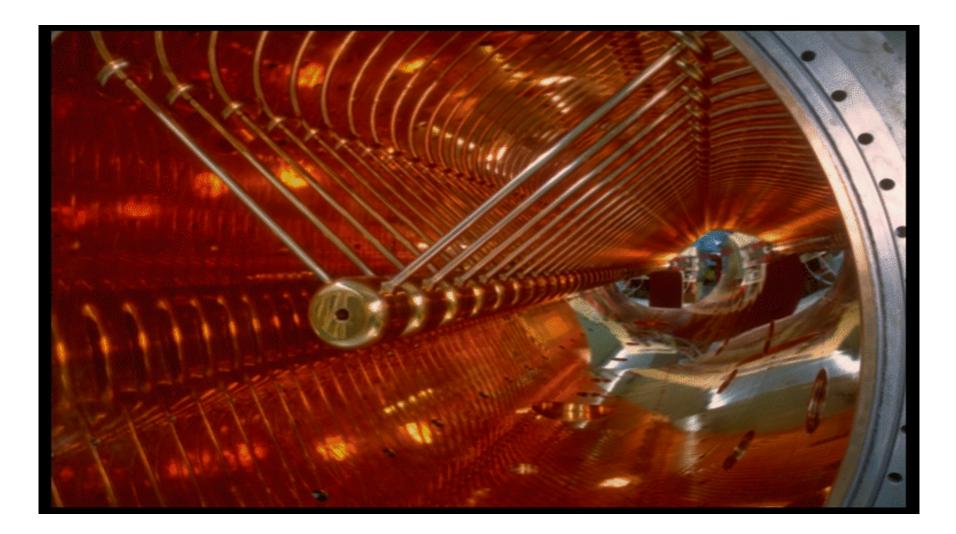
rest energy

$$E_0 = m_0 c^2 = 938 \, MeV$$

momentum

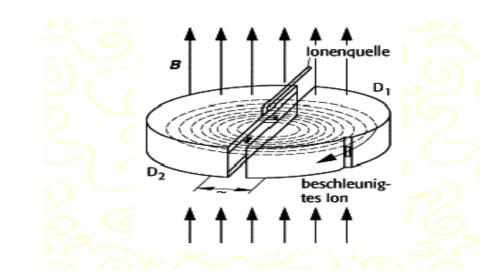
$$E^{2} = c^{2}p^{2} + m_{0}^{2}c^{4}$$
 $p = 310 MeV / c$

GSI: Unilac, typical Energie ≈ 20 MeV per Nukleon, $\beta \approx 0.04 \dots 0.6$, Protons/Ions, v = 110 MHz



circular accelerator with a constant magnetic field B = const

The Cyclotron: (~1930)



Lorentz force:

$$\vec{F} = q * (\vec{v} \times \vec{B})$$

centrifugal force:

$$F = \frac{m * v^2}{\rho}$$

condition for a circular particle orbit:

$$q * v * B = \frac{m * v^2}{\rho} \longrightarrow$$

$$B * \rho = p / q$$

$$\rightarrow \quad \frac{\rho}{v} = \frac{m}{q * B}$$

time for one revolution:

 $T = 2\pi \frac{\rho}{v} = 2\pi \frac{m}{q^* B_z}$

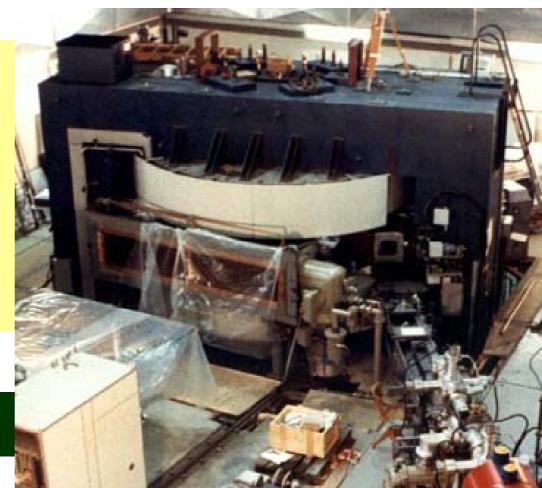
revolution frequency

$$\mathcal{O}_z = 2\pi \frac{1}{T} = \frac{q}{m} * B_z \rightarrow \mathcal{O}_z = const.$$

 $! \omega$ is constant for a given q & B

!!!! $\omega \sim 1/m \neq \text{const.}$

works properly only for non relativistic particles



Example: cyclotron at PSI

I) are there any questions until now ???

II) The state of the art in high energy machines:

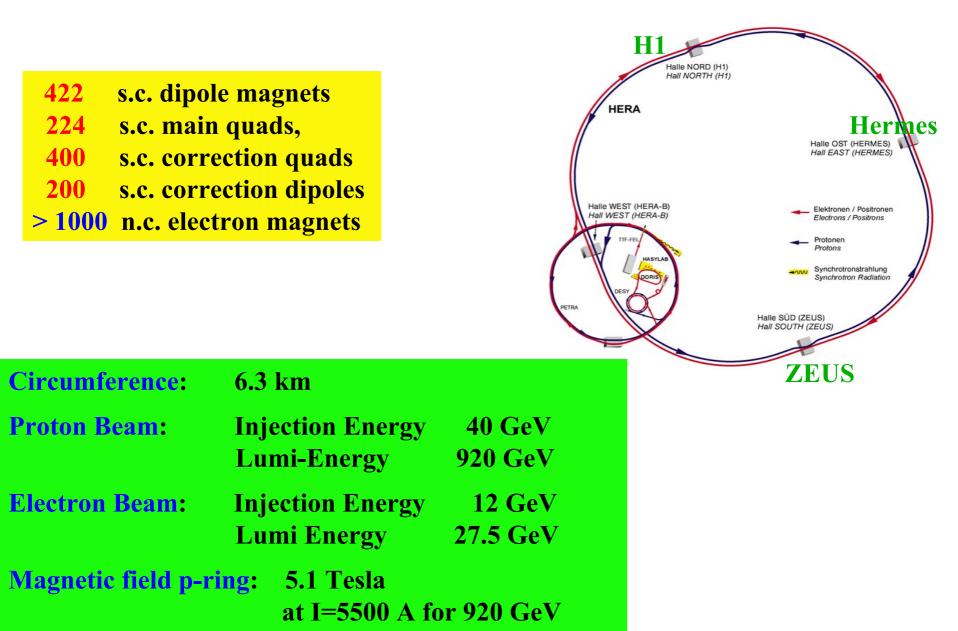
The synchrotron: linear beam optics colliding beams, luminosity synchrotron radiation

The state of the art in high energy acceleration: The Synchrotron

HERA

PETRA

Design of the Machine



Design Principles of a Synchrotron I.) the bending magnets

", ... in the end and after all it should be a kind of circular machine." → need transverse deflecting force

1.) ... again ... the Lorentz force $\vec{F} = q * (\vec{k} + \vec{v} \times \vec{B})$ typical velocity in high energy machines: $v \approx c \approx 3*10^8 \frac{m}{s}$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator where ever it is possible.

But remember: magn. fields act allways perpendicular to the velocity of the particle → only bending forces, → no "beam acceleration"

Lattice Design: Prerequisites

Lorentz force

$$\vec{\vec{r}} = q * (\vec{v} \times \mathbf{B})$$

High energy accelerators \rightarrow circular machines

somewhere in the lattice we need a number of dipole magnets, that are bending the design orbit to a closed ring

In a constant external magnetic field the particle trajectory will be a part of a circle and ... the centrifugal force will be equal to the Lorentz force

$$e^*v^*B = \frac{mv^2}{\rho} \longrightarrow e^*B = \frac{mv}{\rho} = p/\rho$$

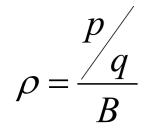
$$\rightarrow B^* \rho = p/e$$

p = momentum of the particle, $\rho =$ curvature radius

B*ρ is called the "beam rigidity"

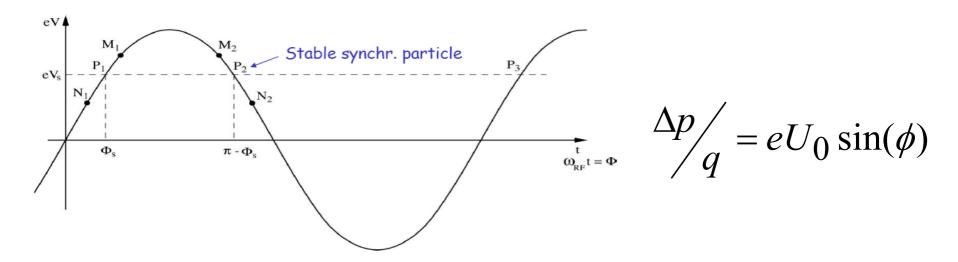
Example: heavy ion storage ring: TSR 8 dipole magnets of equal bending strength

The Synchrotron



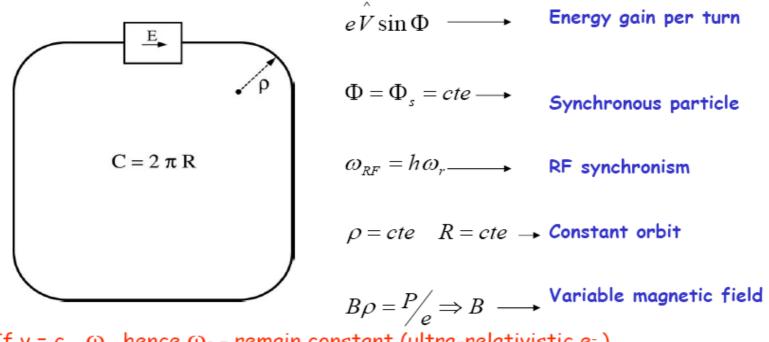
increase magnet field **B** synchronous to momentum **p**

Where is the acceleration? Install an RF accelerating structure in the ring:



Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF phase for which the energy gain fits the increase of the magnetic field at each turn. That implies the following operating conditions:



If v = c, ω_r hence ω_{RF} remain constant (ultra-relativistic e⁻)

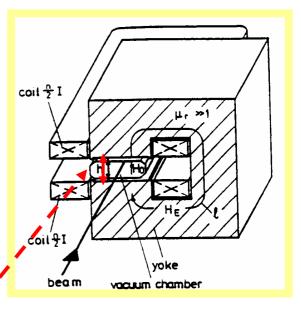
Magnetic Dipole Fields:

Technical design of a dipole magnet

a magnet with two flat, parallel pole shoes creates a homogeneous dipole field

Maxwells equations:

$$\vec{\nabla} \times \vec{H} = \vec{j} + \frac{\delta \vec{E}}{\delta}$$



$$\int_{A} \left(\vec{\nabla} \times \vec{H} \right) \vec{n} \, da = \oint \vec{H} d\vec{s} = h^* H_0 + l_{Fe}^* H_{Fe} = nI$$

$$H_0 = \frac{B_0}{\mu_0}, H_{Fe} = \frac{B_0}{\mu_0 * \mu_{Fe}}$$

n*I = number of coil windings, each carrying the current I

 μ_r = rel. permeability of the material, μ_r (Fe) ≈ 3000

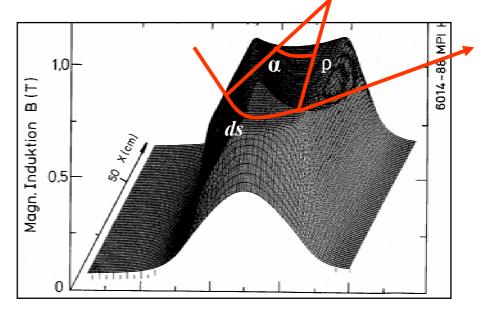
$$B_0 = \frac{\mu_0 * nI}{h}$$

the magnetic field B depends on *the current, * the number of windings * the gap height

Circular Orbit:

$$\alpha = \frac{s}{\rho} \approx \frac{l}{\rho} \quad \alpha = \frac{B^* l}{B^* \rho}$$

The angle swept out in one revolution must be 2π , so



field map of a storage ring dipole magnet

$$\alpha = \frac{\int Bdl}{B*\rho} = 2\pi \quad \dots \text{ for a full circle}$$

$$\rightarrow B * L = 2\pi * \frac{p}{q}$$

The overall length of all dipole magnets multiplied by the dipole field corresponds to the momentum (\approx energy) of the beam !

Example HERA:
920 GeV Proton storage ring
number of dipole magnets N = 416

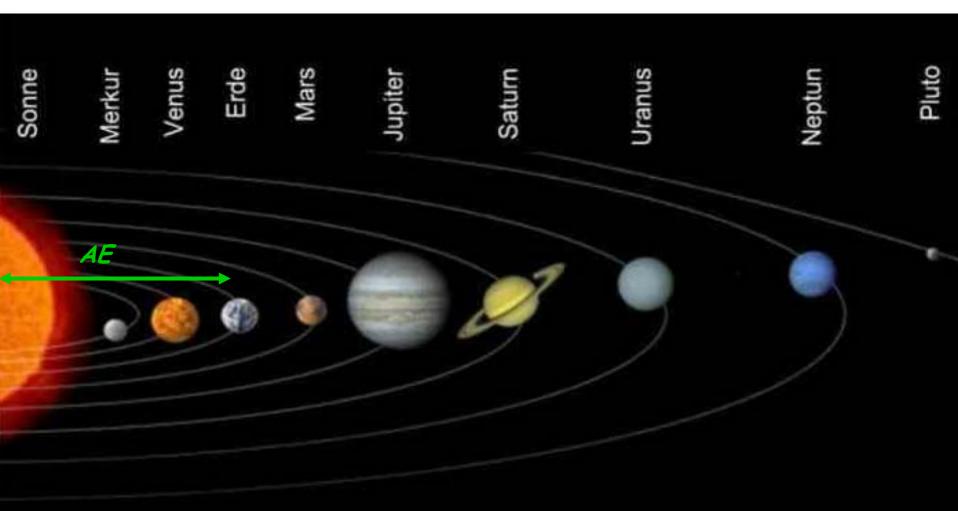
$$l = 8.8m$$

 $q = +1$ e
$$\int Bdl \approx N * l * B = 2\pi p/q$$

$$B \approx \frac{2\pi * 920 * 10^9 eV}{416 * 3 * 10^8 \frac{m}{s} * 8.8m * e} \approx 5.15 \text{ Tesla}$$

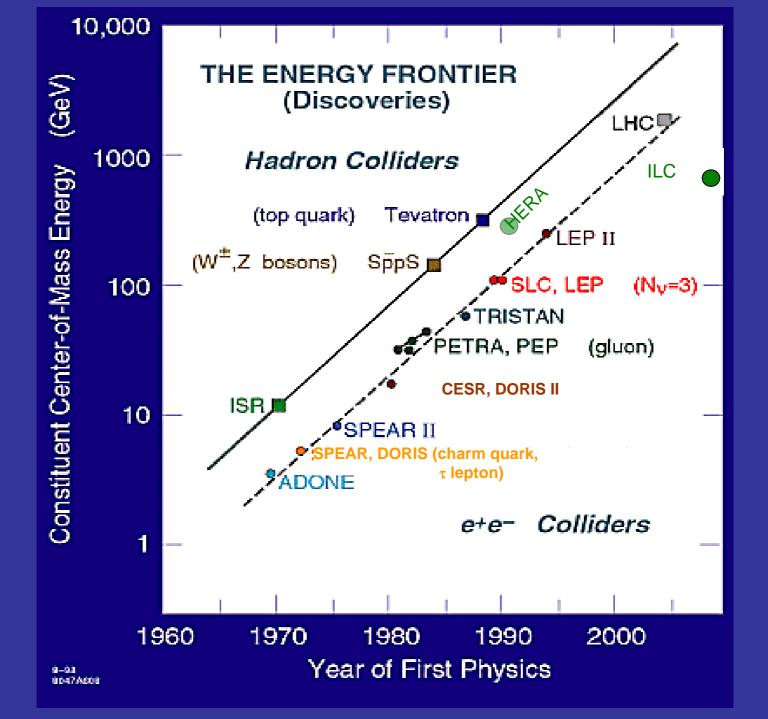
Largest storage ring: The Solar System

astronomical unit: average distance earth-sun 1AE ≈ 150 *10° km Distance Pluto-Sun ≈ 40 AE

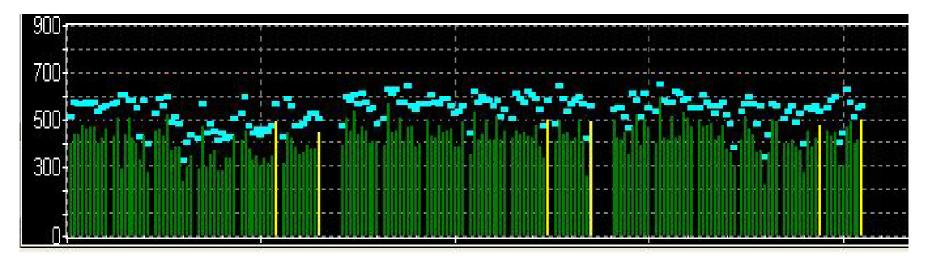


And the largest human made: Large Hadron Collider @ CERN

- •27 km circumference
- •2*7 TeV
- •Dipole: 8.33 T at 2 K
- •Turned on in 2007



What about the beam ? HERA: 100mA protons stored in 180 bunches



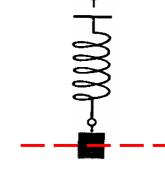
number of particles per bunch

$$N_{b} = \frac{100mA}{180} * \frac{\tau_{rev}}{e}$$
$$N_{b} = \frac{100*10^{-3}}{180} * \frac{Cb}{s} * \frac{21*10^{-6}}{1.6*10^{-19}} * \frac{s}{Cb}$$
$$N_{b} = 7.3*10^{10}$$

A particle beam consits of 180 moscito clouds each containing 7.3*10¹⁰ Moscitos, running back and forth at the speed of light between sun and Pluto

the focusing properties - transverse beam optics

classical mechanics: pendulum



there is a restoring force, proportional to the elongation x:

$$m * \frac{d^2 x}{dt^2} = -c * x$$

general solution: free harmonic oszillation

 $x(t) = A * \cos(\omega t + \varphi)$

Storage Ring: we need a **Lorentz force** that rises as a function of the **distance to**?

..... the design orbit

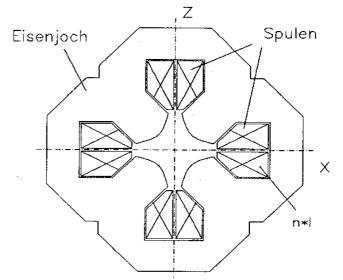
$$F(x) = q^* v^* B(x)$$

Quadrupole lenses to focus the beam

four iron pole shoes of hyperbolic contour

linear increasing magnetic field

 $B_z = g^* x, \quad B_x = g^* z$



Maxwell's equation at the location of the beam ... no current, no electr. field

$$\vec{\nabla} \times \vec{B} = 0$$

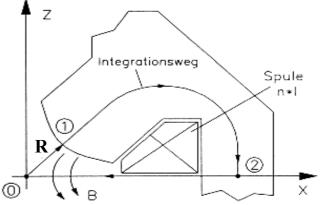
 \rightarrow the B field can be expressed as gradient of a scalar potential *V*:

$$\vec{B} = -\vec{\nabla}V$$
, $V(x,z) = g x z$

equipotential lines V = gxz correspond to hyperbolic curves. Surface of the iron pole shoes (lines of const. potential) has to be hyperbolic.

Quadrupole Field:

$$n * I = \oint H ds$$



$$= \int_{0}^{R} H(r) dr + \int_{1}^{2} \vec{H}_{E} d\vec{s} + \int_{2}^{0} \vec{K} d\vec{s}$$

$$=\frac{1}{\mu_0}\int\limits_0^R g\cdot r\,dr$$

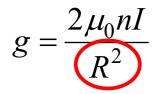
$$g = \frac{2\mu_0 nI}{R^2}$$

Magnetic field of the quadrupole:

Gradient of the quadrupole field:

$$B = g^* x$$

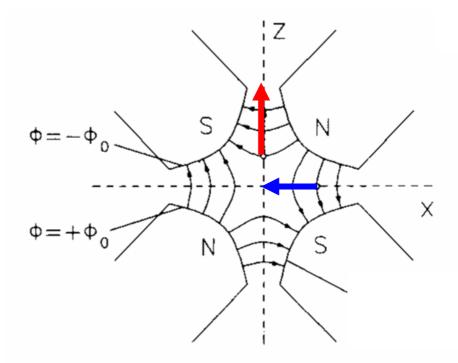
$$g = \frac{dB_z}{dx}$$



Example: quadrupole magnet of HERA electron storage ring

Nota bene:

- I) quadrupole lenses that need large apertures have small gradients
- II) nothing in life is for free a horizontal focusing lens will defocus in the vertical plane (atowr).



Focusing forces and particle trajectories:

1.) normalise magnet fields to momentum (remember: $B*\rho = p/q$)

Dipole Magnet

$$\frac{B}{p/q} = \frac{B}{B\rho} = \frac{1}{\rho}$$

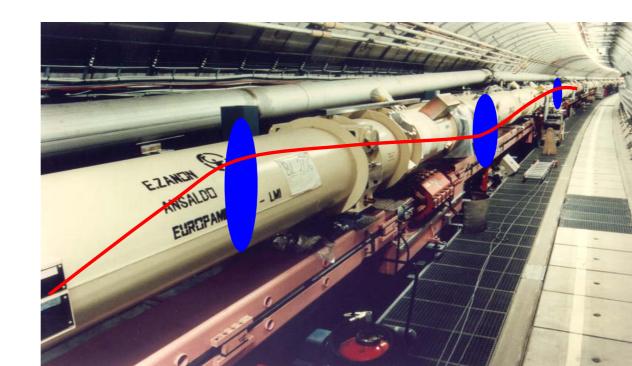
Quadrupole Magnet

$$k := \frac{g}{p / q}$$

Example: HERA Ring

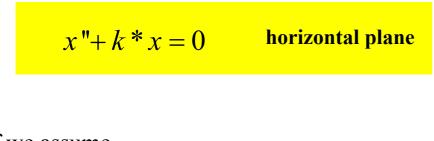
Momentum: p = 920 GeV/c Bending field: B = 5.5 Tesla Quadrupol Gradient G= 110 T/m

→ k = $33.64*10^{-3}/m^2$ → $1/\rho = 1.7*10^{-3}/m$



the focusing properties - Equation of motion

Under the influence of the focusing and defocusing forces the differential equation of the particles trajectory can be developed:



x = distance of a single particle to the center of the beam

$$x' := \frac{dx}{ds}$$

vert. plane:

 $k \Rightarrow -k$

if we assume

- * linear retrieving force
- * constant magnetic field
- * first oder terms of displacement x

... we get the general solution (hor. focusing magnet):

$$x(s) = x_0 * \cos(\sqrt{ks}) + \frac{x'_0}{\sqrt{k}} * \sin(\sqrt{ks})$$
$$x'(s) = -x_0 \sqrt{k} * \sin(\sqrt{ks}) + x'_0 * \cos(\sqrt{ks})$$

More elegant description: Matrix formalism

$$\binom{x}{x'}_{s} = M * \binom{x}{x'}_{0}$$

Matrices of lattice elements

Hor. focusing Quadrupole Magnet

$$M_{QF} = \begin{pmatrix} \cos(\sqrt{K} * l) & \frac{1}{\sqrt{K}}\sin(\sqrt{K} * l) \\ -\sqrt{K}\sin(\sqrt{K} * l) & \cos(\sqrt{K} * l) \end{pmatrix}$$

Hor. defocusing Quadrupole Magnet

$$M_{QD} = \begin{pmatrix} \cosh(\sqrt{K} * l) & \frac{1}{\sqrt{K}} \sinh(\sqrt{K} * l) \\ \sqrt{K} \sinh(\sqrt{K} * l) & \cosh(\sqrt{K} * l) \end{pmatrix}$$

Drift space

$$M_{Drift} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}$$

Nota bene: formalism is only valid within one lattice element where *k* = *const*

in reality: k = k(s)

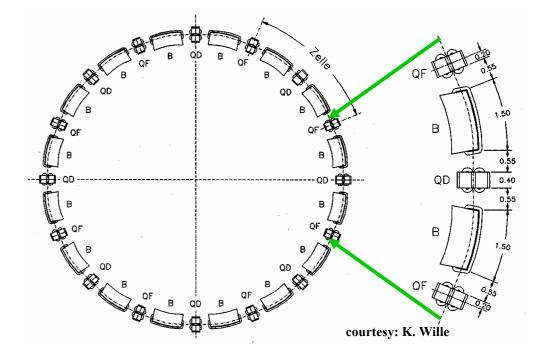
"veni vidi vici …" … or in english … "we got it !"

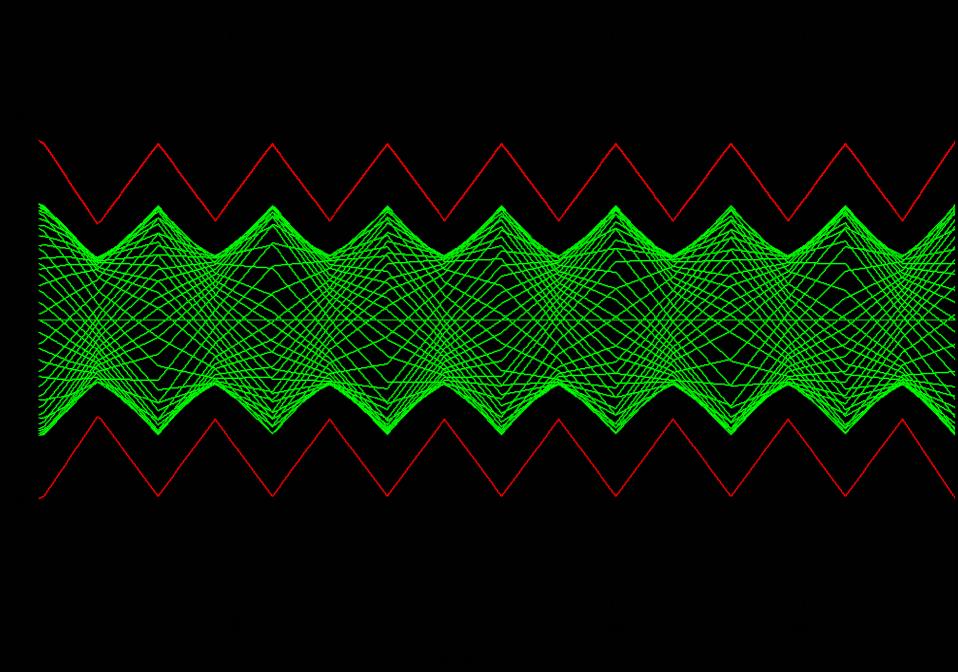
- * we can calculate the trajectory of a single particle within a single lattice element
- * for any starting conditions $x_0 \dot{x}_0$
- * we can combine these piecewise solutions together and get the trajectory for the complete storage ring.

$$M_{lattice} = M_{QF1} * M_{D1} * M_{QD} * M_{D1} * M_{QF2}.....$$

Example: storage ring for beginners

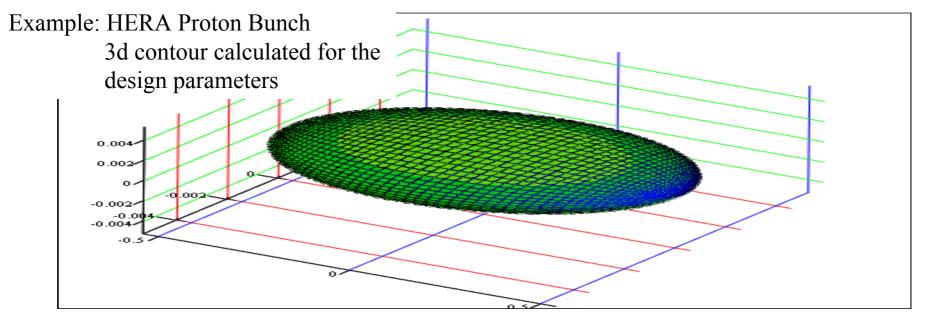
Dipole magnets and QF & QD quadrupole lenses





Contour of a particle bunch given by the external focusing fields (arc values)

	e	p
σ_x	1.0 mm	0.75 mm
σ_z	0.2 mm	0.46 mm
σ_{s}	10.3 mm	190 mm
N _p	3.5*1010	7.3*10 ¹⁰



Twiss Parameters

Astronomer Hill:

differential equation for motions with periodic focusing properties: "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion:

$$x''(s) - k(s)x(s) = 0$$

restoring force \neq const, k(s) = depending on the position s k(s+L) = k(s), periodic function we expect a kind of quasi harmonic oscillation: amplitude & phase will depend on the position s in the ring. in this case the solution can be written in the form:

Ansatz:

$$x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \phi)$$

 $\varepsilon, \Phi = integration \ constants$ determined by initial conditions

$\beta(s)$ given by focusing properties of the lattice \leftrightarrow quadrupoles

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.

Scientifiquely spoken: area covered in transverse x, x' phase space ... and it is constant !!!

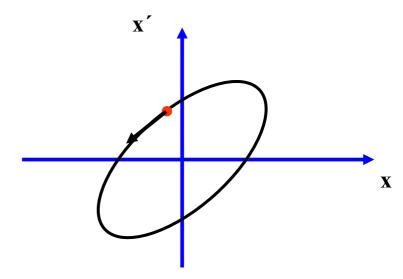
Ensemble of many (...all) possible particle trajectories

$$x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \phi)$$

$$x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)}$$

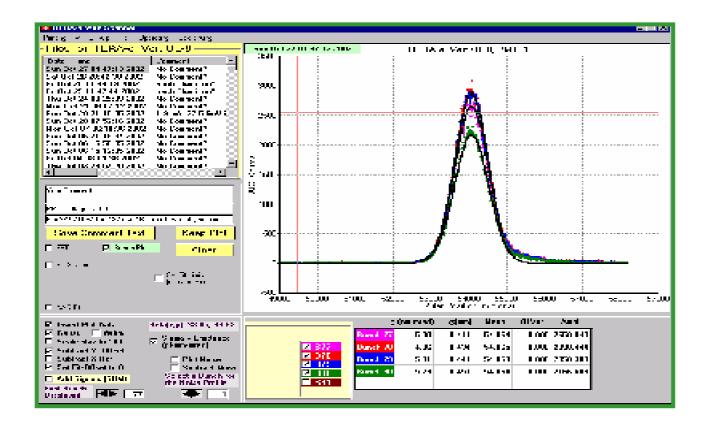
determined by two parameters

$$\sigma = \sqrt{\varepsilon^* \beta}$$



 ε = area in phase space

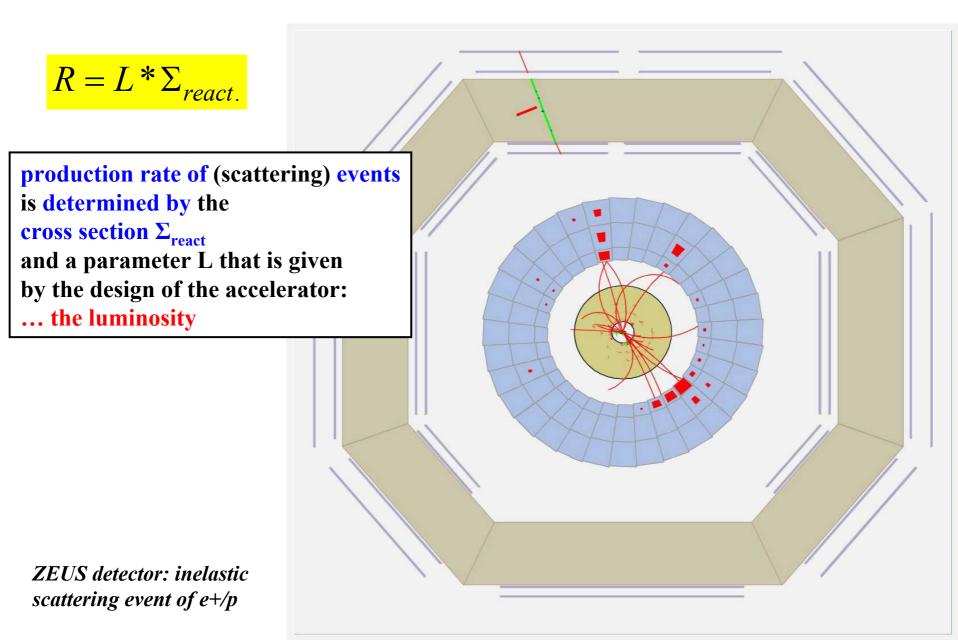
Beam Dimension:



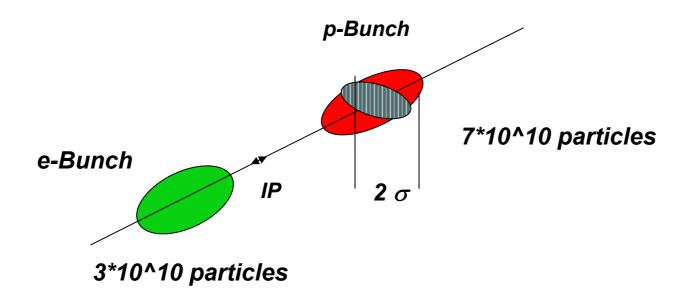
$$\sigma = \sqrt{\varepsilon^* \beta}$$

Example: Measurement of the beam dimension in HERA Wirescanner particle density ≈ gaussian distributed

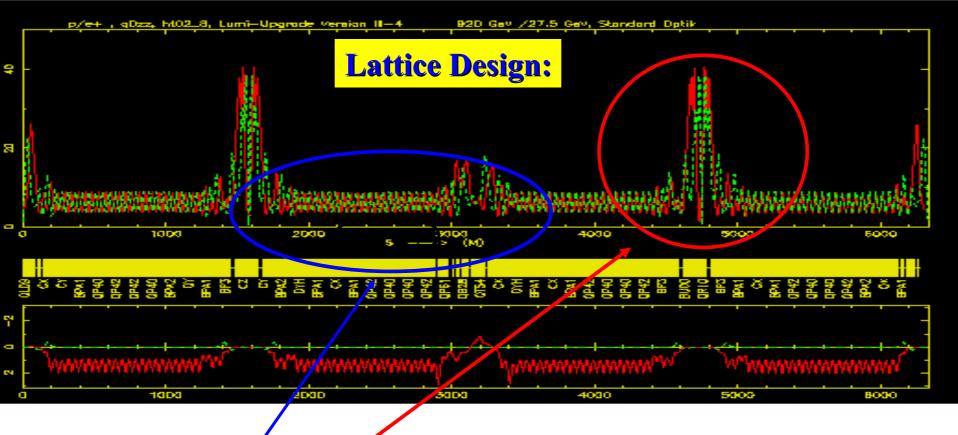
Luminosity



Luminosity



$$L = \frac{1}{4 \pi e^2 f_0 n_b} * \frac{I_e I_p}{\sigma_x^* \sigma_y^*}$$



Arc: regular (periodic) magnet structure:

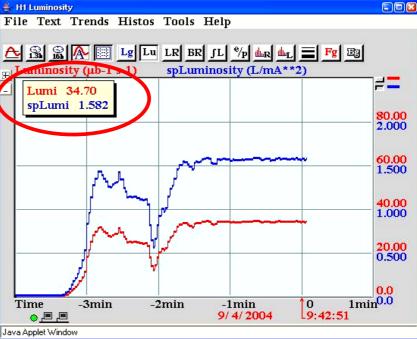
bending magnets → define the energy of the ring main focusing & tune control, chromaticity correction, multipoles for higher order corrections

Straight sections: drift spaces for injection, dispersion suppressors, low beta insertions, RF cavities, etc.... ... and the high energy experiments if they cannot be avoided

Luminosity Parameters at a Collider ring (HERA)

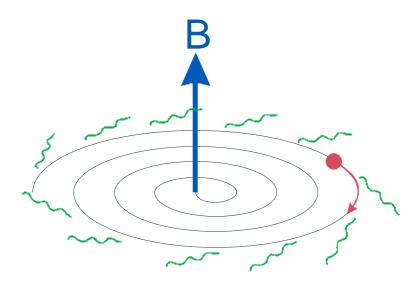
value at IP	horizontal	vertical
beta function	$eta_{ m x}=2.45m$	$\beta_{\rm y} = \theta.18m$
emittance	$\varepsilon_{\rm x} = 7 * 10^{-9} rad m$	$arepsilon_{ m y}=arepsilon_{ m x}$
beam size	$\sigma_{\mathrm{x}} = 118 \mu m$	$\sigma_{\rm Y} = 32 \mu m$
beam currents	$I_e = 43mA$	$I_p = 84mA$
bunch rev. freq.	$\mathbf{f}_0 = 47.3 kHz$	$n_b = 180$
Luminosity	$L = 34.0 * 10^{30} \frac{1}{cm^2 s}$	👙 H1 Luminosity File Text Trends
		Lumi 34.70 Spl umi 1582
		Lumi 34.70 spLumi 1.5

HERA luminosity measured at the H1 detector * injection & acceleration of e+ and protons * E(e+)=27.5 GeV, E(p)=920 GeV * sqeezing both beams (mini beta scheme) * steering the beam position at the IP's



Des einen Freud – des anderen Leid One man's meat is another man's poison Synchrotron Radiation

<u>Synchrotron Radiation</u> from an electron in a magnetic field:



 $=\frac{e^2c^2}{2\pi}C_{\gamma}E^2B^2$

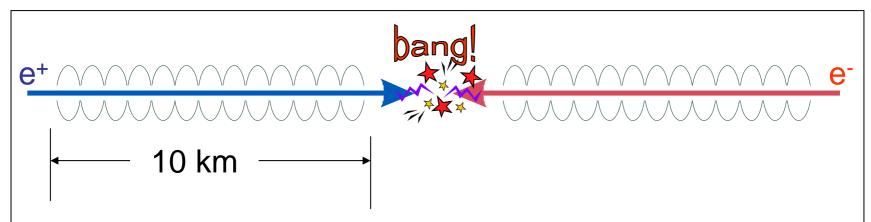
$$C_{\gamma} \propto (m_0 c^2)^{-4}$$

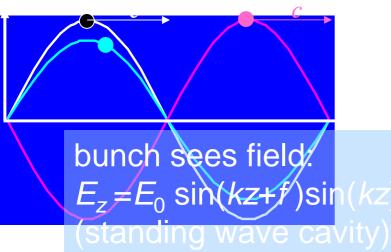
Energy loss per turn of a machine with an average bending radius ρ:

$$\Delta E / rev = \frac{C_{\gamma} E^4}{\rho}$$

Energy loss must be replaced by RF system

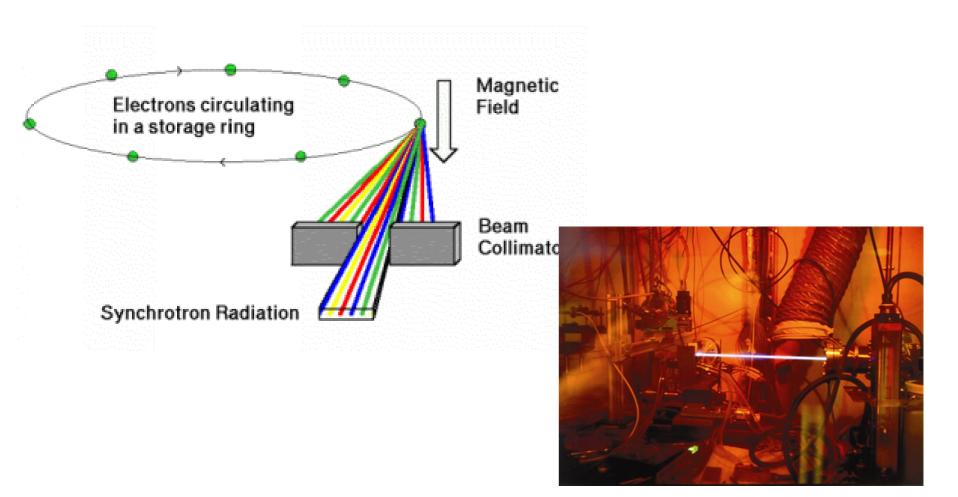
Linear Collider No Bends, but *lots* of RF!





For a $E_{cm} = 500$ GeV: Effective gradient: 25 MV/m

Synchrotron Radiation Source



Bibliography:

1.) Frank Hinterberger: Physik der Teilchenbeschleuniger Springerverlag, Berlin, Heidelberg 1997

2.) Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992

3.) Peter Schmueser: Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01

4.) Bernhard Holzer: Lattice Design, CERN Acc. School: Intermediate Acc. physics course, CERN 2006-02 http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm

5.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970

6.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerateurs, SSC Lab 1990

7.) M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York, 1962