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Simulations in High Energy Physics

H. Jung (DESY)

@ Simulation:
Oxford advanced dictionary: simulate = pretend to be
e  Simulation: why ?
Can't we just calculate things 7?7?77
@ Simulation: what ?
Detector response
Particle decays
ep, e* e, pp interactions
Economy
Life
@ Simulation: How-to ?
apply Monte Carlo technique:
solve complicated integrals
simulate complicated processes
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Application in Economy

What is monte carlo simulation? montecarlo analysis? http://www decisioneering.com/monte-carlo-simulation.html

Search Site

DECTSTONERERING

Crystal Ball Risk Analysis Software &

[roa )

Mews & Company =

Risk Resources = Products Training = Consulting Support = How to Buy =

Information On

Six Sigma & DFSS RISK ANALYSIS OVERVIEW D
Industries i
& Applications WHAT IS MONTE CARLO SIMULATION? F—
Getting Started ) )
on Our Site What do we mean by "simulation?" What is a
Training Classes ) ) _ Mocst?
% _ When we use the word simulation, we refer to any analytical method Traditional
cademic Program feiE N v 3 :
meant to imitate a real-life system, especially when other analyses Rigk Analysis
PR are too mathematically complex or too difficult to reproduce. FET————
Rzl Arralyiis
Without the aid of simulation, a spreadsheet model will only reveal a : T
Quick Links single outcome, generally the most likely or average scenario. Simulation
- Spreadsheet risk analysis uses both a spreadsheet model and =
op 3 4 v ' ¥ AnalFsis
simulation to automatically analyze the effect of varying inputs on of Results
Beunioad outputs of the modeled system.
Newsletters Benefits of
Risk Amralysis
Contact Us Cne type of spreadsheet simulation is Monte Carlo simulation,
which randomly generates values for uncertain variables over Optimization
and over to simulate a model. - _
Time-zeias
Worldwide Offices Faracasting

United States
United Kingdom
Germany
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How did Monte Carlo simulation get its name?

Monte Carlo simulation was named for Monte Carlo, Monaco, where the primary
attractions are casinos containing games of chance. Games of chance such as

roulette wheels, dice, and slot machines, exhibit random behavior.

The random behavior in games of chance is similar to how Monte Carlo

simulation selects variable values at random to simulate a model. When you roll
a die, you know that either a 1, 2, 3, 4, 5, or 6 will come up, but you don't know
which for any particular roll. It's the same with the variables that have a known

range of values but an uncertain value for any particular time or event (e.g.

interest rates, staffing needs, stock prices, inventory, phone calls per minute).




Application in Nuclear Waste ...

Applied Intelligence: The Use of Monte Carlo Simulation...http://www.applied-intelligence.co.uk/Papers/Supercon

Home | Company| Technologies | Clients| Projects | Links | Associates | Contact

Applied Intelligence

Business intelligence through knowledge technology

Case Study: The Use of Monte Carlo Simulation to
Optimise the Supercompaction Process at the Waste
Treatment Complex, Sellafield

First published inUnicom seminar on Al and Optimisation in Process Control(Heathrow) June
1996

ABSTRACT

Mathematical modelling and Monte Carlo simulation have been used to model the
supercompaction process at WTC, BNFL Sellafield. A better understanding of the process was
achieved, and the algorithm initially specified to select drums for compression was found to hav
some surprising and undesirable effects. The application of statistical decision theory allowed
the development and testing of improved algorithms, which should result in major operational
cost savings.
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Monte Carlo method

@ Monte Carlo method
e refers to any procedure that makes use of random numbers
@ uses probability statistics to solve the problem
@ Monte Carlo methods are used in:
@ Simulation of natural phenomena
e Simulation of experimental apparatus
@ Numerical analysis
@ Random number:
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Monte Carlo method

@ Monte Carlo method
e refers to any procedure that makes use of random numbers
@ uses probability statistics to solve the problem
@ Monte Carlo methods are used in:
@ Simulation of natural phenomena
e Simulation of experimental apparatus
@ Numerical analysis
@ Random number:

one of them is 3
No such thing as a single random number

A sequence of random numbers is a set of numbers that have nothing to
do with the other numbers in a sequence

H. Jung, Summerstudent Lecture 2005
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Going out to Monte Carlo

Obtain true Random Numbers
from Casino in Monte Carlo
Puhhh... Going out every night ...

H. Jung, Summerstudent Lecture 2005
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Random Numbers

@ In a uniform distribution of random numbers in [0,1] every number has the
same chance of showing up
@ Not that 0.000000001 is just as likely as 0.5

To obtain random numbers:
Use some chaotic system like roulette, lotto, 6-49, ...
Use a process, inherently random, like radioactive decay

Tables of a few million truly random numbers exist
until a few years ago

BUT not enough for most applications
Hooking up a random machine to a computer is NOT toooooo good, as
it leads to irreproducible results, making debugging difficult....

Develop Pseudo Random Number generatos !!!!
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Random Numbers

In a uniform distribution of random numbers in [0,1] every number has the
same chance of showing up
Not that 0.000000001 is just as likely as 0.5

To obtain random numbers:
Use some chaotic system like roulette, lotto, 6-49, ...
Use a process, inherently random, like radioactive decay
Tables of a few million truly random numbers exist

BUT not enough for most applications
Hooking up a random machine to a computer is NOT toooooo good, as
it leads to irreproducible results, making debugging difficult....

Develop Pseudo Random Number generatos !!!!

Pseudo means: Oxford Advanced Dict.: False
Quasi means: Oxford Advanced Dict.: almost

BUT here the meaning is different

H. Jung, Summerstudent Lecture 2owe
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Quasi Random Numbers

@ mathematical randomness is not attainable in computer generated random
numbers
@ more important: assure that the “random” sequence has the necessary
properties to produce a desired result ... (hmmmm !!!)
@ examples:

@ Iin multidimensional integration, each multi-dim point is considered
independently of the others, and the order in which they appear plays no
role !

@ degree of fluctuations about uniformity: in many cases a “super-uniform”
distribution is more desirable than a truly random distribution with uniform
probability density !

@ use of Quasi Random Numbers might lead to faster convergence of the
integration .... but needs to be checked carefully ...

H. Jung, Summerstudent Lecture 2005 17



Pseudo Random Numbers

Pseudo Random Numbers
@ are a sequence of numbers generated by a computer algorithm, usually
uniform in the range [0,1]
e more precisely: algo's generate integers between 0 and M, and then r =l /M

@ Avery early example: Middles Square (John van Neumann, 1946):
generate a sequence, start with a number of 10 digits, square it, then take
the middle 10 digits from the answer, as the next number etc.:
57721566492 = 33317792380594909291
Hmmmm, sequence is not random, since each number is determined from
the previous, but it appears to be random

@ this algorithm has problems .....

BUT a more complex algo does not necessarily lead to better random
sequences ....

Better us an algo that is well understood
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Pseudo Random Numbers

Pseudo Random Numbers
@ are a sequence of numbers generated by a computer algorithm, usually
uniform in the range [0,1]
e more precisely: algo's generate integers between 0 and M, and then r =l /M

@ Avery early example: Middles Square (John van Neumann, 1946):
generate a sequence, start with a number of 10 digits, square it, then take
the middle 10 digits from the answer, as the next number etc.:
57721566492 = 33317792380594909291
Hmmmm, sequence is not random, since each number is determined from
the previous, but it appears to be random

@ this algorithm has problems .....

BUT a more complex algo does not necessarily lead to better random
sequences ....

Better us an algo that is well understood

From now on assume:
we have good random number generator
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Simulating Radioactive Decay

@ radioactive decay is a truly random process
o dN=-N«xdtie N=N, e
@ probability of decay is constant ... independent of the age of the nuclei:
probability that nucleus undergoes radioactive decay in time Atis p:
p=o At(forx At K1)
@ Problem:
consider a system initially having N, unstable nuclei.

How does the number of parent nuclei, N, change with time ?
@  Algorithm:

LOOP fromt=0 to t, step At
LOOP over each renmi ni ng parent nucl eus
Decide if nucl eus decays:
| F ( random # < «xAt ) then
reduce nunber of parents by 1
ENDI F
END LOOP over nucl ei
Plot or record N vrs t
END LOOP over tine
END

H. Jung, Summerstudent Lecture 2005 20



The first simulation: radioactive decay

C

C

iImplement algo into a small program
show results after 3000 sec for:
N,=100, x = 0.01 s’

At=1s
N0= 5000, a = 0.03 s!
At=1s
algo:

al phal = 0.01

NO1 = 100

deltat = 1

do | =1, 300
it =it + 1
doj =1, NO1

X = RN1

fr = deltat*al phal
If(x.1t.fr) then
reduce nunber of parents NO1
NO1 = NO1 - 1
endi f
fill for each tine it nunmber NO1
call hfill (400,real (it+0.3),0,1.) !
enddo

H. Jung, Summerstudent Lecture 2005
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The first simulation: radioactive decay

@ implement algo into a small program
@ show results after 3000 sec for:

>100
N,= 100, « = 0.01 s 80
At=1s 60
N,= 5000, a =0.03 s

40
At=1s

s MC experiment does not excatly
reproduce theory ....

@ results from MC experiment show >
statistical fluctuations ...

@ ... as expected ........

H. Jung, Summerstudent Lecture 2005
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Monte Carlo technique: basics

 Law of large numbers
chose N numbers u, randomly, with probability density uniform in [a,b], evaluate
f(u) for each u; :

N b
N ) = e [ f(w)d
=1 a

for large enough N Monte Carlo estimate of integral converges to correct
answer.
@ Convergence
is given with a certain probability ...
BUT is a mathematically serious and precise statement
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Monte Carlo technique: basics

 Law of large numbers
chose N numbers u, randomly, with probability density uniform in [a,b], evaluate
f(u) for each u; :

N 1 b
D) e [ pwd
i=1 a

for large enough N Monte Carlo estimate of integral converges to correct
answer.
@ Convergence
is given with a certain probability ...
BUT is a mathematically serious and precise statement

Gambling in Monte Catrlo is also serious and sophisticated

Some people say

H. Jung, Summerstudent Lecture 2005 24



Expectation values and variance

s Expectation value (defined as the average or mean value of function f):

b N
B(f) = [ fw)dG(a) = (bla / f(u)du) = > f(w)

for uniformly distributed v in [a,b] then dG(u) = du/(b — a)
@ rules for expectation values:
E(cx +y) = cE(x) + E(y)

@ Variance

b
V() = [ (- B’ de= (bla / <f<u>E<f>>2du)

@ rules for variance:
if X,y uncorrelated: )
Viex +y) =cVix)+ V(y)
if x,y correlated
Viex +y) = *V(x) + V(y)+2cE [(y — E(y)) (z — E(x))]

H. Jung, Summerstudent Lecture 200



Central Limit Theorem

o Central Limit Theorem e for Gaussian with mean=0 and
for large N the sum of independent variance=1, take for n=12:
random variables is always normally R, —n/2
(Gaussian) distributed: 2 w2 N(0,1)

1 (z — a)
r) — ex — 0.2 0.2
fla) = ——=exp { o } _ R | &

@ example: take sum of uniformly | = il

distributed random numbers:
n .05 |- 0.05 |-

Ry = Ez':l R; %5 25 0 25 5 ° 5
E(Rl) — fUdu — 1/27 0.1 ' 0.06 '
V(R1) = [(u—1/2%du=1/12  ca| :

E(Ry) =12
0.04 |-
V(R,) =n/12 | -
0 | | | | 0 |
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Resumee: Monte Carlo technique

» Law of large humbers

— 1 b
D fw) = g [
i=1 a

MC estimate converges to true integral
» Central limit theorem

MC estimate is asymptotically normally distributed
it approaches a Gaussian density

VYD
VN

g

2l

with effective variance V/(f)
decrease o reduce V(f) or increase N
@ advantages for n-dimensional integral ...
l.e. phase space integrals 2 - n processes
is where other approaches tend to falil
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Monte Carlo: Buffons Needle - Hit & Miss

@ Buffons needle (Buffon 1777)
pattern of parallel lines with
distance d,
randomly throw needle with length d
onto stripes,
count hit, when needle crosses strip
count miss, if not

@ probability for hit is:

d cos(
(@) = cos(a)
d
all angles are equally likely:
fOW/Q cos(a)dar 2
/2 o

http://www.angelfire.com/wa/hurben/buff.html

H. Jung, Summerstudent Lecture 2005

Lo
dcos o i: d

| oop over ntrials
x=RN(1) * d

al pha = RN(2) *3.1415 * 2

y = d * abs(cos(al pha))

i f((x+ty).gt. d) nhit = nhit + 1

endl oop

wite ' pi ="', 2*ntrial/nhit
trials T error
100 2.9850 0.2374
1000 3.2733 0.0749
10000 3.1645 0.0237
100000 3.1483 0.0075
1000000 3.1401 0.0024
10000000 3.1422 0.0008
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Buffons Needle: Crude Monte Carlo

o Buffons needle (Buffon 1777) is
essentially integration of

7T /2
/ cos(a)da
0

@ apply Law of large numbers:

N b
N o fw) = o [ pwdu
=1 a

@ compare Hit & Miss with Integration

1st example of true Monte Carlo
experiment

equivalence of integration and MC
event generation

H. Jung, Summerstudent Lecture 2005
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e

trials

100

1000
10000
100000
1000000
10000000
100000000

0

3.27869
3.36700
3.14218
3.13087
3.14127
3.14154
3.12174

m(hit&miss) m(integral)

3.12265
3.11833
3.15129
3.13416
3.14337
3.14168
3.14156
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Integration: Monte Carlo versus others

One dimensional quadrature

1= [ s =Y wis)

» Monte Carlo: Hit & Miss
w =1 and x. chosen randomly

@ Trapezoidal Rule:
approximate integral in sub-interval
by area of trapezoid below (above)
curve

@ Simpson quadrature
approximate by parabola

@ (Gauss quadrature
approximate by higher order
polynomial

H. Jung, Summerstudent Lecture 2005

Trapezoid Rule

m

method

MC
Trapez
Simpson
Gauss

err(1d)

n 1/2
n-2

n
n-2m+ 1

error

12
n2d
n4d
yem-1)d
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MC method: advantage of hit & miss

@ integration e weighting events
large fluctuations from large weights
weights also to errors applied
difficult to apply further hadronisation

® real events all have weight = 1 ' ' '

@ Hit & Miss method:

MC for function f(x):
get random number:
R1in (0,1)and R2in (0,1)

calculate x = R1
rejecteventif: f <f R2

H. Jung, Summerstudent Lecture 2005 31



MC method: advantage of hit & miss

@ integration e weighting events
large fluctuations from large weights
weights also to errors applied
difficult to apply further hadronisation

® real events all have weight = 1 ' ' '

@ Hit & Miss method:

MC for function f(x):
get random number:
R1in (0,1)and R2in (0,1)

calculate x = R1
rejecteventif: f <f R2

H. Jung, Summerstudent Lecture 2005

i

0
0 0.20.40.60.8 1

X

32



MC method: advantage of hit & miss

@ integration e weighting events
large fluctuations from large weights
weights also to errors applied
difficult to apply further hadronisation

real events all have weight = 1 ' ' '
@ Hit & Miss method:

MC for function f(x):
get random number:
R1in (0,1) and R2in (0,1) 0 O SOADEDE
calculate x = R17 X
rejecteventif: f <f R2

H. Jung, Summerstudent Lecture 2005
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MC method: advantage of hit & miss

@ integration e weighting events
large fluctuations from large weights
weights also to errors applied
difficult to apply further hadronisation

real events all have weight = 1 ' ' '

53
> Hit & Miss method: = 40 |
MC for function f(x): 2
get random number: |
R1in (0,1) and R2in (0,1) 0 002020608 1
calculate x = R1 R X

rejecteventif: f <f R2
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MC method: advantage of hit & miss

@ integration e weighting events
large fluctuations from large weights
weights also to errors applied
difficult to apply further hadronisation

real events all have weight = 1 ' ' '

>
» Hit & Miss method: = 40
MC for function f(x): =2
get random number: NG
R1in (0,1)and R2in (0,1) 0 002040608 1
calculate x = R1 A X

rejecteventif: f <f R2

o  BUT: Hit & Miss method inefficient for peaked f(x)
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MC method: do even better ...

@ Importance sampling

MC for function f(x)
approximate f(x) ~ g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):

/ g(z)dx" = Rl/ g(z")da'

example: f(xz) = I;$0‘7
g(x) =1/x

R1
—_ xma.:c

mmzn

reject event if: f(x) < g(x) R2
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MC method: do even better ...

@ Importance sampling

MC for function f(x)
approximate f(x) ~ g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):

X
/ g(a")dz' = Rl/ g(x")dz' B
example: f(xz) = 1/2%7 20
g(x) =1/x 0
. fgl 0 0.20.40.60.8 1

reject event if: f(x) < g(x) R2
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MC method: do even better ...

@ Importance sampling

MC for function f(x)
approximate f(x) ~ g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):

/ g(z)dx" = Rl/ g(z")da'

example: f(x) = I;x0'7
g(x) =1/x

Rl
— xma,:c

Lmin

X

reject event if: f(x) < g(x) R2
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MC method: do even better ...

@ Importance sampling

MC for function f(x)
approximate f(x) ~ g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):

/ g(z)dx" = Rl/ g(z")da'

Tmin

example: f(xz) = 1/2%7
g(x) =1/z

— xma,:c

Lmin

i .
)Rl 0 0.20.40.60.8 1
X

reject event if: f(x) < g(x) R2
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MC method: do even better ...

@ Importance sampling

MC for function f(x)
approximate f(x) ~ g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):

/ff? g(x’)olx’:Rl/a7 g(x")dz! - ab
example: f(x) = 1/297 .
g(x) =1/

R1
meLSC

mmzn

reject event if: f(x) < g(x) R2

> wow !l very efficient even for peaked f(x)
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Importance Sampling

@ MC calculations most efficient for N Importance sampling
small Welght fluctuations: sample important regions
f(x)dx = f(x) dG(x)/g(x)
@ chose point according to g(x)
instead of uniformly

e fis divided by g(x) = dG(x)/dx
@ generate x according to:

b x
R/ g(x’)dw’:f g(x")dx'

@ relevant variance is now V(1/g):
small if g(x) ~ f(x)
® how-to get g(x)
(1) g(x) is probability: g(x) > 0and [dG(x) = 1
(2) integral | dG(x) is known analytically
(3) G(x) can be inverted (solved for x)
(4) f(x)/g(x) is nearly constant, so that V(f/g) is small
compared to V/(f)

H. Jung, Summerstudent Lecture 2005
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Applications in High Energy Physics

Simulation of detector response

Apply MC method to e*e

what about hadronsiation

what about QCD radiation

going even further: initial state radiation
how-to do a DIS Monte Carlo event generator
some examples
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Application of MC method: Compton scattering

e Compton scattering (O. Klein, Y. Nishima, Z. Physik, 52, 853 (1929))
energy of the final photon k"

R

"1+ (k/m)(1—cosh)

@ Differential cross section

do o2 (K’ L
- — _ _ _S
aQ  2m2\k ) \F "% "

@ angular distribution of the photon is:

2 /N 3 /N 2
(0, p)dOdd — gm”; ((%) T (%) _ (%) sin2 9) sin 0dOdd

e generate azimuthal ¢ independently: ¢ =2 1R,
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Application of MC method: Compton scattering

@ to generate 9, use approximation
for k> m, x-section peaked at small angles

150

(using U=(1-COS 9)) E,=0.0005 GeV
. Ckgrn, L/ . 100
o“dldeo = 572 ( k) sin 0dOd ¢ )

. — k \ |

using k' = 14+(k/m)(1—cos0) 0005 1 15 2 25 sé

2 k —1

Jad9d¢:: Yem 1+ —u dud¢ 10000
2m? m 8000

6000
2 use. 4000

—1 _
Rofy (1+ &) du' = [ (14 )™ du o

0
005115 2 25 3
)1 9

@ generate uwith u = % [(1 4 2%

@ weight by: s

O—CL
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Application of MC method: photon transport in matter

Program for Compton scattering and similar programs for photo-effect and pair-
creation build program that simulates interactions of photons with matter
@  Algorithm
@ Dbreak path into small pieces
@ in each step, decide whether interaction (and which) takes place, given
the total cross section for each possible interaction
a from mean free path length, decide where interaction takes place
@ simulate interaction: give photon new energy and angle, or produce e*e
pair, etc ...
@ continue path with new parameters
@ such program exist
o EGS (SLAC)
@ GEANT (CERN)
@ Detector simulation with programs for particle transport in matter

@ to study detector design
@ to obtain a detailed simulation of the detector response

@ to estimate efficiencies, bias, etc...

H. Jung, Summerstudent Lecture 2005
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Application of Simulation: Calibration of H1 Calorimeter

s simulated energy response in bl
calorimeter g %F .
using GEANT package including 0 foy — e
full detector geometry and 2E e
material information 06 |
* test beam measurement of energy 1 P b b o
response g ]
o test of understanding detector A ® Duen
performance L Y @ Simlaion
® nice agreement within ~ 3% RN
» difference due to dead material in 1 T
front of detector P E e
1.? = | o | |

10 20 30 40 50 60 70 80 90
B [GeV]

J. Spiekermann, diploma 1994
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MC event: hadron and detector level

scattered e

p—beam
920 GeV

Vs ~318GeV > x~7 10%at ®=4 Ge\?
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From experiment to measurement

take data run MC generator

\ detailed detector simulation
compare detector level response: data with MC

define visible x - section in kinematic variables
calculate factor C_ to correct from detector to hadron level

data data
dohqq _ do et
dx

visible x-section on hadron level

All measurements rely on proper MC's I

H. Jung, Summerstudent Lecture 200
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MC generators - different applications ...

@ calculate x-section of various processes « complicated integrals
 multi - differential, in any variable

MC simulation of detector response
input: hadron level events - output: detector level events
Calorimeter ADC hits
Tracker hits

need knowledge of particle passage through matter, x-section ...
need knowledge of actual detector
X-section on parton level
multipurpose MC event generators:
x-section on parton level
including multi-parton (initial & final state) radiation
remnant treatment (proton remnant, electron remnant)
hadronisation/fragmentation (more than simple fragmentation functions...)
fixed order parton level theorists like it
integration of multidimensional phase space
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Constructing a MC for e*e: the simple case

_I_

ot n
— — v
s process: ete” — utu >m<
-

@ do Oé2 g
_ em 1 2 6
d cos 0do 4s ( +eos )

@ goal: generate 4-momenta of u's,
need cm energy s, cos 0, ¢

random number R1(0,1) ¢ = 2 m R1
random number R2(0,1)cos 6 = -1 + 2 R2

s for every R1, R2 use weight with 2k

. 0
s repeat many times deosOd

H. Jung, Summerstudent Lecture 2005
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Constructing a MC for e*e: the simple case

@ process: ete 2u’

2

@ do (87
_ em 1 2 6
d cos 0do 4s ( +eos )

@ goal: generate 4-momenta of u's,
need cm energy s, cos 0, ¢

random number R1(0,1) ¢ = 2 m R1
random number R2(0,1)cos 6 = -1 + 2 R2

s for every R1, R2 use weight with 2k

. 0
s repeat many times deosOd

H. Jung, Summerstudent Lecture 2005
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Constructing a MC for e*e: the simple case

ot . 0
®  process: ete dut i >m<
-

2

@ do (87
_ em 1 2 6
d cos 0do 4s ( +eos )

after 10000 events
@ goal: generate 4-momenta of u's,

need cm energy s, cos 0, ¢ 400 -
300 |-
200 |-

random number R1(0,1) ¢ = 2  R1 100 -

random number R2(0,1)cos 0 = -1 + 2 R2 0 S —
1 05 0 05 1

cos t

s for every R1, R2 use weight with 2k
dcosOd ¢

@ repeat many times
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Constructing a MC for e*e: the simple case

ot . n
®  process: ete dut i >m<
-

2

@ do (87
_ em 1 2 6
d cos 0do 4s ( +eos )

after 100000 events
@ goal: generate 4-momenta of u's, 24000 F

need cm energy s, cos 0, ¢
3000
2000

random number R1(0,1) ¢ = 2  R1 1000 |-

random number R2(0,1)cos 0 = -1 + 2 R2 0 S —
1 05 0 05 1

cos t

s for every R1, R2 use weight with 2k
dcosOd ¢

@ repeat many times
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Constructing a MC for e*e: the simple case

@ process: ete 2u’

2

@ do (87
_ em 1 2 6
d cos 0do 4s ( +eos )

@ goal: generate 4-momenta of u's,
need cm energy s, cos 0, ¢

random number R1(0,1) ¢ = 2 m R1

random number R2(0,1)cos 6 = -1 + 2 R2

s for every R1, R2 use weight with 2k
dcosOd ¢

@ repeat many times

H. Jung, Summerstudent Lecture 2005

after 10° events

Z40000
30000
20000
10000

0
-1

05 0 05 1

cos t

54



Example event: ete > u* -

a example from PYTHIA: Event listing

| particle/jet KS KF orig p_X p_y p_z E m
1 le+! 21 11 0 0. 000 0.000 30.000 30.000 0. 001
2 le-! 21 11 0 . 000 0.000 -30.000 30.000 0. 001
3 le+! 21 11 1 0. 000 0.000 30.000 30.000 0. 000
4 le-! 21 11 2 0. 000 0.000 -30.000 30.000 0. 000
5 le+! 21 11 3 0. 143 0.040 26.460  26.460 0. 000
6 le-! 21 11 4 0. 000 0.000 -29.998 29.998 0. 000
7 120! 21 23 0 0. 143 0. 040 3.539 56.458 56.347
8 l'mu-! 21 13 7 9. 510 1.741  24.722  26.546 0. 106
9 !'mu+! 21 13 7 9. 653 1.700 -28.261 29.913 0. 106
10 (Z0) 11 23 7 0. 143 0. 040 3.539 56.458  56. 347
11 gamma 1 22 3 -0.143 0. 040 3.539 3.542 0. 000
12 nu- 1 13 8 -9.510 1.741  24.722 26. 546 0. 106
13 nu+ 1 13 9 9. 653 1.700 -28.261 29.913 0. 106
sum 0.00 0. 000 0. 000 0.000 60.000 60.000

@ technicalities/advantages

= can work in any frame

2 Lorentz-boost 4-vectors back and forth
= can calculate any kinematic variable
= history of event process
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Constructing a MC for ¢'¢ —ad

T
L=

» process ete” — qq ¢ 1
do o . oo
> = —™ (14 cos® ) e e
d cos 0do 4s Y

@ generate scattering as for ete »>u* u

> BUT what about fragmentation/hadronization ???
@ use concept of local parton-hadron duality

linear confinement potential: V(r) ~ -1/r + kr
with k ~ 1 GeV/fm
gq connected via color flux tube of transverse size of hadrons (~1 fm)

color tube: uniform along its length - linearly rising potential
- Lund string fragmentation
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Lund string fragmentation

@ in a color neutral gg-pair, a color force is
created in between

@ color lines of the force are concentrated in a
narrow tube connecting g and q, with a
string tension of:
k~1GeV/im~0.2 GeV?

W’m A
R

@ as gand g are moving apart in qq rest

frame, they are de-accelerated by string t
tension, accelerated back etc ... (periodic
oscillation)

@ viewed in a moving system, the string is
boosted
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Lund string fragmentation (cont'd)

@  color force materialise a massless qq pair on a point on the string
@ string separates into two independent (color neutral) strings
analogy with electric filed coupled

to particles suggest: oA
dP —mtm’
=C
’ axdi P\ Tk
... tunneling probability through potential

barrier
@ production of different flavour in hadronization

2
—Ttm

Pocexp
K

with m =m_ =0, m =0.25GeV, m =1,2 GeV

udss:c=1:1:0.37:107°
e typical example of Monte Carlo approach
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Fragmentation in the String Model

@ hadronization: iterative process o
s string breaks in qq pairs (still respecting color flow) longitudinal frag.
s select transverse motion with m=m__ (and flavor)

2
P ~ exp (—WZ”) = exp (—7”:’2) exp (—W

@ suppression of heavy quark production
u:d:s:c~1:1:1:0.37:107
actually leave it as a free parameter

@ |ongitudinal fragmentation
symmetric fragmentation function (from either q or q)
f(z) ~z7(1-z)% exp(-b n¥,/z)
harder spectrum for heavy quarks

@ gstartfromqgorq

e repeat until cutoff is reached

@ heavy use of random numbers and importance sampling method

transverse frag.
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Particles and Decays

@ particle masses
2 taken from PDG, where known, otherwise from constituent masses
° particle withs
= in hard scattering production process short lived particles (p,A) have
nominal mass, without mass broadening
= in hadronization use Breit-Wigner:

P(m)dm (m_mO%QJFFQM

» lifetimes
2 related to widths ... but for practical purpose separated
> P(t)dr ~exp (-t/t,) dr
= calculate new vertex position v' = v + 1 p/m
s decays
2 taken from PDG, where known
2 assume momentum distribution given by phase space only
> exceptions, like w,® — 7tr 7 or D — Km, D* — Knr
and some semileptonic decays use matrix elements
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Example event e*e" > qq

o example from PYTHIA Monte Carlo generator including hadronization

| particlel/jet KS KF orig p_X p_y p_z E m
1 le+! 21 -11 0  0.000  0.000 30.000 30.000  0.001
2 le-! 21 11 0  0.000  0.000 -30.000 30.000  0.001
5 1e+! 21 -11 3 0.018 0.040  0.702  0.703  0.000
6 le-! 21 11 4  0.000  0.000 -29.998 29.998  0.000
10 (Z20) 11 23 7 0.018  0.040 -29.297 30.701  9.180 g (2) c (16)
11 gamma 1 22 1 -0.018 -0.040 29.298 29.298  0.000
15 (c) A 12 4 10 -1.950 -3.529 -19.752  20.215 1. 500
16 (cbar) vV 11 -4 10 1.967  3.569 -9.545 10.486 1. 500
17 (string) 11 92 15  0.018  0.040 -29.297 30.701  9.180
18 (Do) 11 421 17 -0.455 -1.495 -9.002 9.325 1. 865 .
19 (omega) 11 223 17 -0300 -0076 -3208 3338 o793 @ applyfragmentation
20 pi+ 1 211 17 -0.168 -0.172 -0.861  0.904  0.140 .
21 (rho-) 11 -213 17 -0.114 -0.513 -4.992  5.106  0.932 dlrectly to parton
22 (onega) 11 223 17 -0.173  0.118 -2.022 2.180  0.789
23 pi+ 1 211 17 0.226 0.925 -2.593 2.766 0.140 @ a|| Covered by
24 (D*-) 11 -413 17 1. 001 1.253  -6.599 7.082 2.010 i )
25 e+ 1 11 18 -0.191  0.241 -1.261  1.297  0.001 hadronization .... soft
26 nu_e 1 12 18 -0.154 -0.789 -4.174  4.250  0.000
» where is QCD ??7?

53 pi - 1 -211 47 0.318 -0.061 -1.293 1.340  0.140

sum  0.00 0.000  0.000  0.000 60.000 60.000
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Doing things better: e*e >qqg

@ process ete 2qqg
@ full matrix element calculation
@ waitch out color flow !!!

@ gluons act as kicks on strings

| particle/jet KS KF orig p_x p_y p_z E m
c(ld)

g (16)
g (17)

- 0 0. 0. .
le-1 ] et (1)
2 le-! 21 1 0 0.000  0.000 -30.000 30.000  0.001

5 1e+! 21 11 1 0. 000 0.000 29.699  29.699 0. 000 g (18)
6 le-! 21 11 2 -1.319 -1.236 -26.950 27.011  0.000 (19)
7 120! 21 23 0 -1.319 -1.236  2.748 56.710 56.614 gl
8 Ic! 21 4 7 -15.986 16.072 18.293 29.167  1.500 & 2 (20)
9 !char! 21 -4 7 14.667 -17.308 -15.545 27.542  1.500 B
11 gamm 1 22 2 1.320 1.236 -2.744  3.286  0.000
15 (c) A 12 4 8 -11.291 11.550 13.219 20.926  1.500 C
16 (g) | 12 21 8 -3.992  3.139  4.805 6.991  0.000 @ more Iarge pt emissions
17 (g) | 12 21 8 -0.279  0.951  0.179  1.007  0.000
18 (g) | 12 21 8 0.122 -0.178 -0.505  0.550  0.000 g4 :
19 (g) | 12 21 9 0.128 -0.237  0.146  0.307  0.000 not all covered by fixed
20 (g) | 12 21 9 -0.093 -0.746 -0.364  0.835  0.000 .
21 (9) | 12 21 9 8331 -6.743 6395 12482 0000 order calculations
22 (cbar) v 11 -4 9 5754 -8.971 -8.335 13.613  1.500 :
@ doing much better
needed

- parton shower approach
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Approximations to higher orders: parton showers

o  Approximation to higher orders..... c

e fragmentation functions

® parton density functions 4?

i

@ since alphas is not small, higher orders contributions are important
@  Approximations:
DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi )
BFKL (Balitski, Fadin, Kuraev, Lipatov)
CCFM (Catani, Ciafaloni, Fiorani, Marchesini)
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DGLAP equation

dz oug

o differential form qg—qf(ﬂfaQ)/ > O

P+(Z)f( )

» modified differential form using Sudakov form factor”
- dq’
As(q0,4) ZeXp( N o & )

0 f(z,q) _/dz as P(2) I (g )
19q A, (9, q0) z 2m As(q, Qo) 21
 integral form

flz,q) = fo(le 7)As(q, q0) /dZ/dq - As(q' q0)P(2) f @,q)

@ no- branchmg probability form g,to g

H. Jung, Summerstudent Lecture 2005 64



DGLAP evolution equation

o for fixed x and C¥ chains with different branchings contribute
@ |terative procedure, spacelike parton showering

xG(x,Q)

10 ) anssased 5 sasssed o5 sssasmd & o5y
w0 10?10?10t
X

flz,Q) =
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10
3 e ] - -4 -3 -2 -1 -4 -3 -2 -1
0w 10?2 1w? ! w? 10”7 1w” 10 0w 10” 107 10
X X X

PEPETT™ BT BT BT

fo(x,q0)As(Q, q0) + > frlzk, k)
k=1
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Parton Showers for the final state

timelike parton shower evolution
» starting with hard scattering

» select g, from Sudakov form factor

» select z from splitting function

» select gq,from Sudakov form factor

» select z, from splitting function
» stop evolution if g,<q,
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Parton Shower

@ Evolution equation with Sudakov form factor recovers exactly evolution
equation (with _prescription)
@ Sudakov form factor particularly suited form Monte Carlo approach
@ Sudakov form factor
=> gives probability for no-branching between g, and q
=» sums virtual contributions to all orders (via unitarity)
=>» virtual (parton loop) and
=>» real (non-resolvable) parton emissions
» need to specify scale of hard process (matrix element) Q ~ p,

» need to specify cutoff scale Q, ~ 1 GeV
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The DIS process ep - epX

s cross section  2ZlEcX) — dnal ((1 —y+ %) P (x,Q%) — % FE(x, QQ))
with Fg(x,QQ) — Zf 6? (:L’C]f(CC,QQ) + xq¢(z, Qz))
@ generate y with g(y)=1/y, and C¥ with g(Q?)=1/C¥ :

Rq

ymzn

R
QQ_ 2 anam .
T min ngn
@ calculate x-section with:

1 2
a(ep—>e’X):N dy dQ / dy/
1 9

1=

2
oglep — e'X Zyz n dQ2 log (Zmﬁ) log (Qg’baa:>

@ calculate 4-momenta of scattered electron and virtual photon
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Hadronic final state: Di-jet rates

€0.14 - ® Hidata

g’ B
‘:012 = Ew > 5, B > 5 Cev
& [

e o1 |

- —— RAPGAP-NLO :
E e CASCADE b
0.08 |- ’

' =~~~ 4
0.06 [ - !
004 8 —1—e¢—------ ;

\ e
/ 1—jets 002 b |—:

0 b—u .

80.14 - ® Hidata
n:“'+0-12 5
01 |
0.08 |
0.06 |
0.04 }|
0.02 |

0 : ‘ —_—
-4 -3

10 10

o (2+remnant) jets in DIS for CF > 5 GeV~?, p,**> 5 GeV

» O(as) processes not enough
2> need O(a?) or resolved virtual photon contributions
=>» or something new ?7?7?
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Hadronic final state: Energy flow

<x>=0.14 107 F <x>=0.27107°

W

. i ® H1
Et 4 | <Q'>= 3.8 GeV* F <Q*>=7 GeV?
irecti irecti | —— RAPGAP-NLO E
v direction p—direction S et g 3
- - g -

1/N SE/3n" (GeV)

|

o Etflowin DIS at small x and fgrward
angle (p-direction):
2 O(a,) processes not enough

F  <x>=0.0810" F  <x>=0.1810"°

w

<QP>= 3.2 GeV? b L= 6,3 Gai

= - N € = : : :
=2 Ny W o 2N Wb
—_—— — —

I I

(=)

> need O(a?) orresolved virtual photon contributions
@ or something new 7?77
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Conclusion

@ Monte Carlo event generators are needed to calculate multi-parton cross
sections
Monte Carlo method is a well defined procedure
hadronization is needed to compare with measurements
parton shower (leading log) approach is needed, hadronziation not enough
MC approach extended from simple e+e- processes to
ep processes
pp processes
and heavy lon processes
@ proper Monte Carlos are essential for any measurement

Monte Carlo event generators

contain all our physics
knowledge !!!!!
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List of available MC program

@ HERA Monte Carlo workshop: www.desy.de/~heramc
» ARIADNE

A program for simulation of QCD cascades implementing the color dipole model

*» AROMA
Heavy quark production in boson-gluon fusion using full electroweak LO cross-sections (with
quark masses) in ep collisions, DIS and photoproduction. Parton showers and Lund
hadronization gives full events.

» CASCADE
is a full hadron level Monte Carlo generator for $ep$ and $p\bar{p}$scattering at small $x$ build
according to the CCFM evolution equation. It is applicable in $ep$ to photoproduction and
DIS, and for heavy quark production as well as inelastic $J/\psi$.

o HERWIG

General purpose generator for Hadron Emission Reactions With Interfering Gluons; based on
maitrix elements, parton showers including color coherence within and between jets, and a

cluster model for hadronization.

o JETSET
The Lund string model for hadronization of parton systems.
« LDCMC

A program which implements the Linked Dipole Chain (LDC) model for deeply inelastic
scattering within the framework of ARIADNE. The LDC model is a reformulation of the
CCFM model.
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List of available MC program

» LEPTO

Deep inelastic lepton-nucleon scattering based on LO electroweak cross sections (incl. lepton
polarization), first order QCD matrix elements, parton showers and Lund hadronization
giving complete events. Soft color interaction model gives rapidity gap events.

o PHOJET

Multi-particle production in high energy hadron-hadron, photon-hadron, and photon-photon
interactions (hadron = proton, antiproton, neutron, or pion).
@ POMPYT
Diffractive hard scattering in $p\bar{p}$, $\gamma-p$ and $ep$-collisions, based on pomeron
flux and pomeron parton densities (several options included). Also pion exchange is
included. Parton showers and Lund hadronization to give complete events.

s PYTHIA

General purpose generator for $e+e”-$, $p\bar{p}$ and $ep$-interactions, based on LO matrix
elements, parton showers and Lund hadronization.

» RAPGAP

A full Monte Carlo suited to describe Deep Inelastic Scattering, including diffractive DIS and LO
direct and resolved processes. Also applicable for $i\gamma$-production and partially for
$p\bar{p}$ scattering.
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