
Exploring the simulation of GISAXS patterns from real
space 3D models with Blender and HipGISAXS-2.0.

Paul Vautravers

University of Manchester

October 31, 2022

Abstract

3D real space models were made for silver nanowire (AgNW) and cellulose nanofib-
ril (CNF) meshes using Blender. The distorted wave born approximation (DWBA)
was applied to the AgNW mesh models through the grazing incidence small angle
x-ray scattering (GISAXS) simulation software, HipGISAXS-2.0. The simulation
process for producing GISAXS patterns was automated, while the initial stage in
blender was semi-automated. Scattering patterns produced for meshes of 2360 Ag-
NWs used cylindrical form factors and were averaged together, displaying patterns
that encouraged further use of this simulation pipeline.

1

Contents

1. Introduction 3
1.1. Nanoparticles: . 3
1.2. GISAXS: . 3
1.3. HipGISAXS: . 4
1.4. Overview of report: . 5

2. Methods 5
2.1. Development of 3D models with Blender 5

2.1.1. Silver Nanowires . 5
2.1.2. Cellulose Nanofibrils . 6

2.2. Applying scripting and outputting data from blender 8
2.3. Using HipGISAXS-2.0 . 8
2.4. Automation . 9
2.5. Miscellaneous . 9

3. Results 10
3.1. Constructing 3D models . 10

3.1.1. AgNW films . 10
3.1.2. CNF films . 10

3.2. Simulation of GISAXS patterns . 11
3.2.1. AgNW with Cylindrical Form Factor 11

4. Discussion 14

5. Conclusion 16

6. Acknowledgements 17

7. Appendix 18

A. Blender 18
A.1. Data Collection . 18
A.2. Model Parameters . 22

A.2.1. AgNW . 22
A.2.2. CNF . 22

B. Automation 24

2

1. Introduction

1.1. Nanoparticles:

The study of nanoparticles is developing at a prodigious rate, owing to the fascinating
and immensely useful properties that systems composed of nanoparticles exhibit. These
properties differ so much from those of bulk materials due to confinement effects. Con-
finement effects and their appearance as interesting, novel properties, depend on the
size and shape of individual nanoparticles, as well as the arrangement of systems of
nanoparticles. In order to develop systems of nanoparticles with desirable properties,
characterisation tools are required to understand their morphology.

1.2. GISAXS:

Many methods exist which characterise nanoscale structures. Conventionally, real space
tools such as Atomic Force Microscopy (AFM) and Transmission Electron Microscopy
(TEM) have been extremely popular for probing local surface structures. However, while
convenient and well established, these tools have notable disadvantages for probing more
sophisticated materials and material processes: they produce limited sample statistics,
tip convolution artefacts, they are difficult to apply in situ during kinetic processes,
such as sample growth and they completely fail to gather information for embedded,
sub-surface structures [1].

Grazing Incidence Small Angle X-ray Scattering (GISAXS) is a characterisation tech-
nique that manages to remedy these issues, albeit with its own shortcomings. GISAXS
can be compared with regular Small Angle X-ray Scattering (SAXS), but featuring a
reflection geometry as opposed to a transmission geometry. GISAXS’ scattering geome-
try differs in several ways from that of SAXS, on account of the substrate-film interface.
Due to the shallow angles involved, close to the critical angle of the material, multiple
scattering effects must be accounted for. The Born Approximation (BA) for a single
scattering event is no longer valid for GISAXS. The Distorted-Wave Born Approxima-
tion (DWBA) accounts for the additional scattering events which occur in this regime,
considering (in decreasing likeliness): scattering (BA), reflection then scattering, scat-
tering then reflection and lastly, reflection, scattering and then a further reflection. The
terms that constitute the DWBA are shown in figure 1. Having accounted for multiple
scattering events, the form factor is now modified such that:

F (qxy) = F (qxy, qz) +R(αi)F (qxy, pz) +R(αf)F (qxy,−pz) +R(αi)R(αf)F (qxy,−qz), (1)

where qxy is (qx
2+qy

2)1/2 and pz is (ki+kf)z. For incident and final angles much greater
than the material’s critical angle, one can neglect the higher order terms and the first
order BA is retrieved. Notable features of resulting GISAXS patterns are the specular
peak, where αi = αf , and the diffuse scattering intensity peak, αi ̸=αf , also known

3

as the Yoneda peak. Due to reflection and refraction, the Yoneda peak occurs at the
material dependent critical angle for total external reflection [1]. In conjunction with
other features, the specular and Yoneda peaks may then be used to characterise films of
nanoparticles. Furthermore, due to the beam travelling a significant distance through
the film, a large sample area is probed and the resulting patterns provide statistically
significant information on nm scale morphologies averaged over mm to cm scales. Depth
dependent information can be retrieved by varying incident angle, with information on
embedded structures also being accessible. Lastly, assuming the film can bear exposure
to x-rays, the technique is non-destructive and can be applied in a range of different
dynamic processes, enabling in situ studies [2]. Disadvantages of GISAXS compared
to other techniques are: its reliance on synchotron radiation; collected signals are very
small without a high brilliance source, morphological information is presented in recip-
rocal space; must be converted back into real space, and difficulty characterising single
nanoparticles; beam size and limitations of x-ray optics convene to make it difficult to
probe very local parts of a sample.

Figure 1: Illustration of the scattering and reflection events which the distorted wave
born approximation (DWBA) accounts for. Rf denotes Fresnel reflection co-
efficient; αi and αf the incident and final angles; Ki and Kf the incident and
final wave vectors. Schematic adapted from [2] and [3]

.

1.3. HipGISAXS:

To complement real experimental GISAXS results, multiple in-house GISAXS simulation
and analysis tools have been developed. While many open-access, dedicated GISAXS
tools now exist, many are orientated towards specific types of material structures: they
limit the user to specific models and are not fit for all purpose GISAXS simulations.
For example, the tool IsGISAXS [4] focuses on nano particles supported on a substrate
and struggles with the number of layers present in the sample. In every case, analysis
has been limited to systems of objects with analytical form factors. HipGISAXS [5],
however, goes beyond other existing tools and allows for arbitrary extended objects
as well as standard analytical objects to be treated. The ability to quickly simulate
GISAXS patterns for discretised graphical objects, e.g. triangulated meshes contained
in stl files, is enabled through HipGISAXS’ judicious use of parallel computing.

4

1.4. Overview of report:

The focus of this project was firstly to explore using the animation software Blender
to produce authentic digital samples of silver nanowire (AgNW) and cellulose nanofib-
ril (CNF) films and secondly to simulate GISAXS patterns from these models with
HipGISAXS-2.0., using either analytical form factors where possible or triangulated
meshes.

Without further detailed discussion of the scattering theory relevant for GISAXS or
the parallel computing theory required for HipGISAXS, this report is structured in the
following manner. The methods section details: first; the process of producing AgNW
and CNF samples in Blender, second; retrieval of relevant data from Blender models,
third; the use of the HipGISAXS-2.0 code and fourth; the development of automation
routines. The results section gives examples of blender samples generated for both
materials as well as present the limited GISAXS patterns produced at the time of writing.
Thereafter, suggested improvements to the implementation of blender and HipGISAXS-
2.0 are discussed.

2. Methods

2.1. Development of 3D models with Blender

2.1.1. Silver Nanowires

The blender user interface was used to add a cylinder object. Immediately upon adding
the cylinder, the number of vertices that define the circular cross section was lowered to
5. This produced the desired pentagonal prism shape. Additionally, the edges around
the pentagonal face were extruded outwards and snapped together. This created a
pentagonal pyramid end to the model wire ends, as seen in figure 4. Additionally, a
plane object was originally chosen to act as a substrate.

After constructing a model for a single wire, it was necessary to specify the physics of the
object. In the case of AgNW, rigid-body physics was suitable. Rigid body parameters
were tweaked many times in order to achieve stable and convincing behaviour for many
AgNWs. The final parameters may be found in the appendix. Most importantly, the
object’s physics is rigid body, with a convex hull and set to ‘active’. On the other hand,
the substrate must also be given rigid body dynamics, but set to ‘passive’. This ensures
that the wires fall down, and that the plane interacts with them, but does not fall itself.

To develop a model of an AgNW film, a large number of AgNWs was required. This
was achieved by applying the array modifier to the single AgNW base model. Applying
the modifier once allowed the construction of a row of wires, extending perpendicular
to the wire length. Applying this a second time then made a plane of wires. Applied
once more, the array modifier then gave a 3D array wires. To separate the resulting
array object back down into its constituent wires, ‘separate by loose parts’ in edit mode

5

(a) Cross section of AgNW (b) Pentagonal Pyramid end

Figure 2: Illustration of the AgNW unit made using Blender

was selected, and then back in object mode ‘origin to geometry’. This produces an
array of wires all with the correct physics, based on the original model. The array
structure used for the final films featured rows of wires, with gaps, that were orientated
differently based on the vertical position in the array, seen in figure 3. This complex
array structure occupied almost the whole substrate and improved the homogeneity of
the film, compared to simple array structures.

In order to achieve a random arrangement of wires on the surface, it was necessary
to randomise the positions and orientations of the wires around their positions in the
initial array. This was first achieved by applying the randomise transformation, from
the object menu, with all wires selected, and then varying the parameters accordingly.
Later, however, this was performed via scripting.

2.1.2. Cellulose Nanofibrils

In addition to developing models for AgNW networks, blender was also used to create
a small scale sample of a CNF film. The workflow for the AgNWs was also used for the
CNF film. While having a circular cross section, the number of vertices was also reduced
for the nano fibrils. In this case, the choice was motivated by practical limitations rather
than design. Given that the fibrils required flexibility to collapse over one another,
additional vertices around their circumference, split across the length of the object,
were required. These additional rings of vertices then provided points where the object
could bend. As such, the number of edges defining the cross section were limited to 20.
This was to limit additional computation when applying non rigid body dynamics to
the fibrils. The cross section and a side view of the fibril with its rings of vertices can
be seen in figure 3. These sets of vertices along the fibril length were added from edit

6

Figure 3: Vertical view of array of 2360 silver nanowire models, arranged to improve
homogeneity of the deposited film. Alternating layers had wires in rows along
x and y.

mode, using the ‘loop cut’ tool.

The soft body option provided by blender did not produce the desired effects for the
nanofibrils; instead, the ‘cloth’ option was used, due to its internal pressure parameter.
This ensured fibrils would not collapse under one another when interacting. The cloth
simulation is, however, far more sophisticated and computationally demanding. This
motivated reducing the number of vertices defining the cross section, as every vertex can
move in a cloth model. In addition to having cloth physics, the fibrils also had ‘collision’
physics. The full list of physics parameters may be found in the appendix at the end
of the report. An array structure was also used for the fibrils; however, their being so
computationally demanding limited the samples to 25 fibrils. As such, arrays of 5x5
(y,z) were used. In this case, animations lasted up to 160 frames, and the fps dropped
to around 0.5. Samples of 200 fibrils resulted in the fps dropping to 0.04, illustrating
the challenge of using such sophisticated physics.

7

(a) CNF 20 sided ‘circular’
cross section.

(b) Additional vertices added to CNF unit to provide
flexibility.

Figure 4: Illustration of the CNF unit made using Blender.

2.2. Applying scripting and outputting data from blender

Next it was necessary to develop a script with blender’s python API to expedite the pro-
cess of developing the film and to export the relevant data. This section will only apply
for AgNW, as the HipGISAXS-2.0 code for arbitrary object inputs was not produced at
the time of the project, naturally required to deal with the far from analytical shapes of
the cellulose nanofibrils.

To avoid applying the randomise transform from the UI, python’s uniform distribution
was used to add a small translation and rotation to each sample, in all dimensions.
The radius and lengths of the wires were distributed using python’s normal distribution.
Code was then written to store the positions and Euler angles of the wires, which would
then be used with a cylindrical form factor in HipGISAXS-2.0 to simulate the GISAXS
pattern for the 3D sample. This required firstly setting the animation in motion from
the script and a function to get the angles and positions only once the film was settled.
This was implemented using a frame handler to execute code at a specific frame. The
relevant code is provided in the appendix.

2.3. Using HipGISAXS-2.0

With the positions, orientations and scalings outputted from blender, HipGISAXS-2.0
was used to generate GISAXS patterns. The approach used here was to treat the
wires as cylinders. In this manner, the analytical cylindrical form factor was applied
and effects due to the orientation and translation of individual cylinders dealt with
trivially. Throughout this project, the Maxwell computing cluster at DESY was used to
execute HipGISAXS-2.0. First, the experimental parameters were specified in the file,
‘gen config.py’. Having inputted the required parameters, the command , “python3
gen config.py” was entered into the terminal. This updated the config.json file, which
was used later by ‘main.py’. Secondly, the path to the numpy file was specified in
‘main.py’ and the command “python3 main.py” was entered. These are the only steps

8

to generate GISAXS images once the numpy file is available.

2.4. Automation

The above procedures could not be applied to collect a large amount of data, without
being extremely tedious. Clearly, an important part of this project was automating the
data collection process and applying HipGISAXS-2.0.

The first development on this front was updating the code in ‘main.py’ to use the python
‘sys’ library, so that a default file name could be kept in the code, and a sample number
could be inputted from the terminal. Following this, a .sh file was written that simply
iterated over a range of values and generated the scattering pattern for each sample
number. This enabled GISAXS patterns to be produced at a large scale, without further
input from the user.

The process of creating samples was also automated. First this was done on the local
system using a .bat file, but it was subsequently updated to a .sh file, to run on maxwell.
This requires blender to be loaded on Maxwell, with command ,“module load maxwell
blender”. Blender then runs on Maxwell, opening the base file and applying the python
script described above to it. The data is then collected in a numpy file, first as a dummy
file, and then renamed according to the sample, to avoid overwriting data. This has been
integrated with HipGISAXS-2.0 pattern generation to do everything in a single loop, or
they can be done separately. As such, large volumes of sample data and simulations are
generated remotely, in a reasonable timescale, without user input.

2.5. Miscellaneous

With sample sizes of only around 2000 nano wires, GISAXS patterns fluctuated between
different samples. In order to produce GISAXS patterns that would be valid for a large
system of nanowires, it was necessary to average GISAXS patterns over many different
samples. Furthermore, it was necessary to investigate the number of samples required
to reach an ensemble average that no longer displayed fluctuations. The approach taken
was to construct a dictionary object in python, where an initial list of images was split
into 2,4,8,16 sub lists etc. In this manner, an average was made from all images, then
two averages from the two halves of the original list and then 4 averages from the 4
quarters etc. The dictionary keys correspond to the number of samples, giving an array
containing one or more images; individual images can then be called with their index
in the array. For example, with an initial input of 64 images, the average over all 64
is accessed with, ‘agnw avg dict[‘64’][0]’, while the 2nd average over 32 is given by,
‘agnw avg dict[‘32’][1]’.

A simple image analysis approach enabled a crude estimate of the area coverage of these
films. This was performed by taking a top-down image of the AgNW film, converting
the pixel array into a black and white binary, and counting the number of black pixels,

9

corresponding to pixels where wires were present. The process of taking images, how-
ever, was not automated and so remains only a small development in this project, as
discussed later. Furthermore, some limited work to characterise the size of pores pro-
duced in the film was completed using the image analysis library cv2 and the function
‘connectedComponentWithStats’.

3. Results

3.1. Constructing 3D models

3.1.1. AgNW films

Blender’s user interface was employed successfully in conjunction with an automation
routine to produce a large amount of AgNW sample data. The pentagonal morphology of
individual wires was reproduced while the qualitative features of AgNW networks were
also replicated through blender. A substrate was produced of dimensions 80x80 µm,
where a metre in blender corresponded to 1 µm. Gaussian distributed wires had lengths
with mean and standard deviation 10 ± 0.1 µm and radii with mean and standard
devaition of 0.06 ± 0.001 µm. Figure 5 presents a sample AgNW network produced in
Blender. This appears to display good homogeneity, a large amount of connectivity, but
also regions where pore-like gaps have formed in the film.

Additionally, side profiles of the networks developed in Blender also appear qualitatively
correct, being uniform to a good degree, thinning out only slightly from the centre.
Parameters in Blender’s user interface such as the substrate-wire friction were employed
successfully to promote film spreading and limit the number of standing wires. This is
displayed in figure 6.

3.1.2. CNF films

Systems of Cellulose Nanofibrils were also produced with Blender, although on a far
reduced scale. On account of the extremely large render times required for the nanofib-
rils, models were limited only to 25 fibrils. This was a failure of the approach used
with blender, due largely to the number of vertices given to the fibrils. Despite that,
these tests did show that blender is highly capable of producing chaotic systems of non
rigid body objects in a convincing manner. Figure 7 provides two example images from
samples of CNF made in Blender.

Side profiles of the selected samples clearly illustrate the arrangement of nanofibrils
laying over one another, bending and drooping, shown in figure 8.

10

Figure 5: Image captured in blender UI, showing z axis view of 2360 silver nanowires
deposited on a substrate.

3.2. Simulation of GISAXS patterns

3.2.1. AgNW with Cylindrical Form Factor

Treating the wires as cylinders and applying the DWBA, GISAXS images were produced
using HipGISAXS-2.0. As with sample generation, the simulation process was also suc-
cessfully automated, producing 160 sample images in 4 hours and 8 minutes with CPUs.
The patterns produced in this project did not completely satisfy what was expected, but
they did encourage further work with the approach, using blender and HipGISAXS-2.0.
Figure 9 illustrates two sample scattering patterns. These images do present some of the
correct structure, with a diffuse scattering peak (Yoneda) extended outwards in Qxy, at
a non-zero Qz value, as well as a specular peak raised above the Yoneda region. Addi-
tionally, there is high intensity at low Qz and central Qxy, corresponding to the direct
beam intensity.

To acquire statistically reliable information on the morphology of a typical AgNW film,

11

Figure 6: Image captured in microsoft 3D object viewer, showing x axis view of 2360
silver nanowires deposited on a substrate. Film only bulges marginally at the
centre.

(a) (b)

Figure 7: Top view of system of 25 cellulose nanofibrils made with Blender.

many different sample scattering patterns needed to be averaged. In this manner, the
different samples are like Monte Carlo iterations to provide an ensemble average for the
film in question. The possibility to average over different subsets of the total image
set illustrated the required number of samples to approach the ensemble average. The
average GISAXS pattern for 256 samples is shown in figure 10.

This ensemble scattering pattern retains many of the features of the individual scattering
patterns, There is some very limited structure along Qz above the specular peak.

12

(a)

(b)

Figure 8: Side view of system of 25 cellulose nanofibrils made with Blender.

(a) (b)

Figure 9: HipGISAXS patterns produced for the first and second AgNW sample gener-
ated in blender. The parameters employed in the gen config.py file to produce
these images were θ = 0.4◦, δ =2.88×10−6, β =2.62×10−8 and λ = 0.954.

13

Figure 10: Average GISAXS pattern produced from 256 different AgNW films produced
in blender, each with 2360 films.

4. Discussion

While this project demonstrated HipGISAXS-2.0 and Blender’s capacity to produce
GISAXS patterns of real space models, and a working pipeline for generating sample
data was produced, many improvements remain.

Blender was found to be an extremely versatile software, which in its basic to interme-
diate functionality can be used confidently within a week. There is a wealth of resources
online for developing complex models. Furthermore, blender files could be opened re-
motely on Maxwell, and python scripts then executed on these files - allowing the process
to be automated. However, automation of blender sample generation was certainly not
streamlined in this project. The current approach involves opening a base blender file
containing the array of AgNWs, which are then randomised and allowed to settle into
a film. At a chosen frame number, relevant data is extracted and blender then quits,
before the original base file is reopened and the process restarted. Opening and quit-
ting blender is necessarily quite demanding; a solution that involves looping from within
blender and resetting the base array there would likely be far quicker and more logical.
Moreover, while this automation process works diligently in the background on a remote
computer, it is still a nuisance for it to open blender’s user interface at all. A future

14

solution should implement the term‘-b’ in the batch script to allow this process to run
completely in the background, without the user interface opening. This would require
the animation to be fully rendered in blender, and not just in the user interface. This
in itself may be more demanding, and necessitate changes to the frame handling - it re-
mains to be seen if avoiding the user interface would be beneficial. Rendering of physics
animations in blender can be improved by ‘baking the physics’, this should certainly
be explored to improve data production rates with blender. Additionally, scaling of the
model needs to be improved. Currently the whole array and substrate needs to be scaled
in coordination with the dimensions inputted into the python script. For example, the
model used for the patterns above are scaled so that 1m in blender corresponds to 1µm.
Moving to a set up without an initial base array, and either scaling the substrate and
the model together from the script or removing the current substrate entirely would
potentially help with this. Eventually a user could be able to input the number of wires
and the various model scales without altering the base file.

HipGISAXS-2.0. demonstrated its capacity to generate sample patterns using the data
captured from blender. Currently, the user still needs to update a lot from within
the various scripts, but this will naturally improve as work is continued to move from
HipGISAXS-1.0 to the newer version. Among the features yet to be fully moved from
v1.0 to 2.0 is the input and use of triangulated meshes made in blender. This feature
was one of the strongest aspects of HipGISAXS-1.0 and will markedly increase the
number of models that can be analysed with HipGISAXS-2.0 when transferred. In
the context of this project, use of the triangulated meshes would allow full treatment
of the pentagonal cross sections - rather than just treating them as cylinders. This,
however, would vastly increase the time to simulate GISAXS scattering patterns. To
remedy this, the HipGISAXS-2.0 scripts should be implemented with GPUs, rather than
CPUs. This should be possible with the existing HipGISAXS-2.0 scripts using Cupy,
but various issues prevented this when attempted on Maxwell. Future projects should
focus on simulating scattering patterns from triangulated data from blender (with the
aid of GPUs), enabling the analysis of a wealth of diverse and complicated 3D models.

Additional work has also been explored using blender and the data it generated. Images
taken from the user interface of the film, from above, were crudely analysed in python
to find an area coverage value. This could be improved by using a camera in the blender
model, and having it take an image at a certain frame. This would require rendering
the animation in full, again demanding, but would enable automatised area coverage
analysis. Similarly, the numpy data collected from blender contains sufficient information
to calculate a rough value of the film volume filling. This simply requires the film surface
to be approximated and the enclosed film volume compared with the volume of the
individual wires. Comparison of the volume filling and area coverage with simulated
GISAXS patterns could be aided by machine learning to infer information about the
former from the latter. This avenue should certainly be explored in future work.

15

5. Conclusion

Convincing models of silver nanowire and cellulose nanofibril meshes were produced using
blender. With a base file in blender, an automation routine was developed to generate
large volumes of data, either locally or remotely (i.e. on Maxwell). HipGISAXS-2.0 was
used to produce GISAXS patterns that had many correct features. Improvements to
the model scaling and automation, as well as the analysis of triangulated blender data,
were identified as key points for future work. The project has demonstrated a proof of
principle for this approach, and identified physical variables such as volume filling that
could soon be analysed within the framework of Blender and HipGISAXS-2.0.

16

6. Acknowledgements

I would like to thank Professor Roth for giving me the opportunity to work on such an
interesting project and to be part of the welcoming community at DESY.
Thank you to DESY as a whole and in particular the organisers of the DESY summer
student program for organising this incredible experience.
I am extremely grateful to Dinesh Kumar from Berkeley for his steadfast commitment
to meeting and discussing the project code every week.
I would also like to thank the Postdocs and postgrads in the Professor Roth’s working
group who helped so much and were always friendly.
In particular I am thankful for the help and advice from Yusuf Bulut, whose input was
invaluable when I was struggling with the project.
Thank you to Andre Rothkirche for frequently helping with all my IT and shell scripting
issues.
Lastly, thank you to the amazing cohort of DESY summer students who have contributed
to some amazing memories during my time here.

17

7. Appendix

This appendix contains the most important source code from this project, code for
randomising the blender nanowires and collecting the resulting data. The remaining
code can be found in the project repository, hosted on github [6]; in particular, code for
averaging images and area coverage analysis. Additionally, tables of parameters for the
existing blender models are also given in this appendix.

A. Blender

A.1. Data Collection

The code below is executed with the base blend file, ‘agnw 2360 cplx.blend’. This code
is specifically for automation, hence the call to quit blender after saving the numpy data.
Without this call, the code could be pasted into blender’s scripting window and edited
with the base model directly.

1 ”””
2 Python code written to randomise a basis array of nanowires and let them settle on a

substrate
3 in Blender. This relies on the initial blender file having a substrate and series of

wires that
4 are placed in a collection ’AgNW’. Outputs numpy file containing scales, positions

and euler
5 rotations of nanowires
6 Paul Vautravers 19/09/2022
7 ”””
8 import bpy
9 import numpy as np
10 import random
11 import mathutils
12
13 #assignment of nanowire collection
14 units = bpy.data.collections [’AgNW’]
15
16 def get xyz angles() :
17 #function to collect the xyz coords and euler angles of each agnw
18 #returns xyz coords and euler angles
19
20 for i , obj in enumerate(units. all objects) :
21
22 #positions and angles are collected in temporary array
23 xyz coords euler angles temp = np.hstack((obj.matrix world.to translation()

[:], obj.matrix world.to euler () [:]))

18

24
25 if i == 0:
26 xyz coords euler angles = xyz coords euler angles temp
27 else :
28
29 xyz coords euler angles = np.vstack((xyz coords euler angles,

xyz coords euler angles temp))
30
31 return xyz coords euler angles
32
33 def randomise agnw(r mean,r sig,l mean,l sig, shift) :
34 #function to randomise the scale, rotation and position of wires around initial

array site
35 #inputs are the mean and standard deviation of radius and length respectively, plus

a shift
36 #returns the radii and lengths of every wire
37
38 #units are considered in micrometres, e.g 10 for the mean length is a 10 micrometre

long wire
39 #must be accounted for in hipgisaxs
40
41 radii arr = np.array([])
42 len arr = np.array([])
43
44 for obj in units . all objects :
45
46 #objects must be selected in blender to operate on them
47 obj. select set (True)
48
49 #radii and lengths of wires are Gaussian distributed
50 rand radius = np.random.normal(r mean,r sig)
51 rand length = np.random.normal(l mean,l sig)
52
53 radii arr = np.append(radii arr,rand radius)
54 len arr = np.append(len arr,rand length)
55
56 #x,y dimensions calculated from radius and applied to wires
57 rand xy = rand radius/(np.sqrt(2))
58 obj.dimensions = [rand xy,rand xy,rand length]
59
60 #wires shifted randomly in x,y,z around their original lattice site
61 rand translation = tuple(np.random.uniform(−shift,shift,size=3))
62 obj. location = obj.location + mathutils.Vector(rand translation)
63

19

64 #angles distributed over 2 pi and object angle updated
65 rand rotation = tuple(np.random.uniform(0,2,size=3))
66 obj. rotation euler = mathutils.Euler(rand rotation)
67
68 #object deselected before next iteration
69 obj. select set (False)
70
71 radii arr = np.reshape(radii arr ,(len(radii arr) ,1))
72 len arr = np.reshape(len arr,(len(len arr) ,1))
73
74 scale arr = np.hstack((radii arr , len arr))
75
76 return scale arr
77
78 def get data(key frame, scale arr) :
79 #function to collect agnw data at the specified frame
80 #inputs are the frame number to take data, and scale array to combine with

coordinates
81 #returns a ’frame handler’ which is then applied in a separate function below
82
83 #function defined within larger function
84 def xyz handler(scene):
85
86 if bpy.context.scene.frame current == key frame:
87
88 #coords and angles collected and joined with scale array
89 xyz angles arr = get xyz angles()
90 xyz angle scales data = np.hstack((xyz angles arr, scale arr))
91
92 #data is deleted for wires that fell through the substrate
93 #occurs when there’s a large number of wires
94 del indices = np.array ([], dtype=int)
95 for i , val in enumerate(xyz angle scales data [:,2]) :
96 if val < 0:
97 del indices = np.append(del indices,int(i))
98 xyz angle scales data = np.delete(xyz angle scales data , del indices ,0)
99
100 #data saved under temporary filename in same folder as this script
101 np.save(”agnw temp”,xyz angle scales data)
102
103 #blender quits so that automation can open the script again
104 bpy.ops.wm.quit blender()
105
106 return xyz handler

20

107
108 def register (update):
109 #function to apply the frame handler defined above
110 bpy.app.handlers.frame change post.append(update)
111
112 def main():
113 #wires randomised and relevant data collected at specified frame number
114
115 bpy.app.handlers.frame change post.clear()
116 scale array = randomise agnw(0.06,0.001,10,0.1,5) #default values

0.06,0.001,10,0.1,5
117 bpy.ops.screen.animation play()
118 register (get data(400, scale array)) #default value of 400
119
120 main()

The only thing that the user should change when executing this script is the ran-
domise agnw arguments, which are all given in micrometers. Among the shortcomings
with this code is that the model should be scaled in the UI if the user wants to provide
significantly different scales. Multiple improvements could be made to this script, for
example generating the wires rather than randomising an existing array, allowing to vary
the number of wires easily and perhaps avoid any interaction with the UI.

This script is to be used as part of a shell script, as below; however, the script could
be pasted into the blender scripting window and used there, providing the call to quit
blender is removed.

21

A.2. Model Parameters

The physics parameters for AgNW and CNF are provided in this section as screenshots
from the blender user interface.

A.2.1. AgNW

Figure 11: Rigid body physics parameters used for the silver nanowires in this report.

The substrate had simple parameters, mesh type, 0.1 friction, no bounciness and sensi-
tivity of 0.04m

A.2.2. CNF

Figure 12: Collision physics parameters used for the cellulose nanofibrils in this report.

22

Figure 13: Cloth physics parameters used for the cellulose nanofibrils in this report.

Figure 14: Additional Cloth physics parameters for reactions to collisions, used for the
cellulose nanofibrils in this report.

The collision parameters for the substrate in this case were: damping; 0.1, thickness
outer; 0.02, inner; 0.2 and friction; 80.

23

B. Automation

This appendix provides the final shell script used for this project, generating data from
blender and simulating the GISAXS scattering pattern in each iteration. The segmented
code for the data collection and GISAXS simulation is provided on the project repository
[6], as well as the .bat script to produce blender data on a local microsoft device.

1 #!/bin/sh
2 # components of updated file name
3 file prefix =”agnw 2360 s”
4 file suffix =”.npy”
5 # for loop from 1 to 256, in integer steps
6 for i in {1..256..1};
7 do
8 #blender opened with base file and python script applied to it
9 blender agnw 2360 cplx.blend −P agnw script 2360 cplx.py
10 #new file name constructed and python output overwritten
11 new file name=”agnw 2360 s$i.npy”
12 mv agnw temp.npy $new file name
13 echo ”Sample data $new file name produced!”
14
15 #hipgisaxs simulation
16 python3 main u1.py $i
17 echo ”Sample $i GISAXS pattern produced!”
18 done

The only thing the user needs to change here is sample range, i.e. to start at 1 or 4, or
finish at 256 or 10. Naturally the files should all be stored in the same folders.

The user is reminded that to use this code on Maxwell at DESY, they must call ‘module
load maxwell blender’ in the terminal beforehand.

24

References

[1] Gilles Renaud, Rémi Lazzari, and Frédéric Leroy.

[2] P. Müller-Buschbaum. A Basic Introduction to Grazing Incidence Small-Angle X-Ray
Scattering. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[3] Alexander Hexemer and Peter Müller-Buschbaum. Advanced grazing-incidence tech-
niques for modern soft-matter materials analysis. IUCrJ, 2(1):106–125, 2015.

[4] Rémi Lazzari. isgisaxs: A program for grazing-incidence small-angle x-ray scattering
analysis of supported islands. Journal of Applied Crystallography, 35(4):406–421,
2002.

[5] Slim T. Chourou, Abhinav Sarje, Xiaoye S. Li, Elaine R. Chan, and Alexander
Hexemer. hipgisaxs: A high-performance computing code for simulating grazing-
incidence x-ray scattering data. Journal of Applied Crystallography, 46(6):1781–1795,
2013.

[6] P. Vautravers. Blender and hipgisaxs-2.0 gisaxs simulations with real space models.
https://github.com/paulvautravers/HipGISAXS-DESY-2022, 2022. Accessed: 2022-
10-31.

25

