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Abstract

Thousands of devices and sensors in European XFEL generate a large amount
of data. For predictive maintenance reasons, these data essentially needed to be
processed to find abnormal behavior. Therefore, time series data is segmented into
small window sizes of 10 seconds, and the frequency magnitude for every window
frame is estimated. The result is compared with the remaining, in order to figure
out which time frame has high density magnitude. With the proposed method, it
is possible to determine the threshold between abnormal and normal data.
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1 Introduction

Day after day, the volume of data produced by industry and scientific organizations is
growing rapidly. The European XFEL is one of the research facilities that offers ul-
trashort X-ray pulses of outstanding spatial coherence and spectral brilliance [1]. At
the European XFEL, X-ray experiments with up to 27000 photon pulses per second,
arranged into 10 Hz trains of pulses at 4.5 MHz, can be performed. State-of-the-art
technology, high-repetition-rate, and 2D image detector are capable of generating the
images of scattered photons, produced by a single XFEL photon pulse [2].

Karabo is a distributed control system which also allows data acquisition [2]. It stores
several properties (e.g. temperatures, voltages, ...) in a time-series Influx database.
These are therefore available for future analysis.

The objective of this project at European XFEL [3] is to detect anomalies within the time
series data. To do so, the time scale which has a high spectral density variance compared
to other time scales is considered to be an abnormal. The project is in its early stage
and aims at mitigating failure and downtime in facility by predicting failures. Hereby,
in this project part of the task is to find an efficient mathematical method to collect and
pre-process data from the Influx database, containing information from different devices.

After the goal of the project has been stated, this report aims at summarizing the work
performed. In this work, only the conventional anomaly detection method in time series
data is implemented and some other techniques are reviewed as they might be interesting
in the next stages of the project. In the introduction section, there are a brief review and
interpretation of time series data analysis and anomaly detection techniques. Afterward,
in the experimental section, practical implementation and the result of the work are
discussed more in detail. In the end, the deduction of the work and discussion about
this work are explained.

1.1 Time Series Data Analysis

A time series is defined as set of observations that are ordered in the temporal axes, and
it can be discrete or continuous. The analysis of time series data played a significant role
in early natural science. For example, astronomers used time series of the relative stars
and planets to predict astronomical events[4]. Moreover, the analysis of time series data
can help to detect abnormalities, and irregularities, extract some patterns, or predict
future values based on previously observed values. Typically, irregularity, inconsistency,
abnormality, and time hiatus are natural outcomes of the data generation process that
is often seen in scientific experiment data. So, time series analysis is usually used to
detect changes in the evolution of a time series from before-to-after some intervention
or unusual changes happening. It could be done through some statistical calculations or
some state-of-the-art Machine learning or Deep Learning Models. Different techniques
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of statistics and Machine Learning proposed in the literature are explained in a later
section.

Figure 1: A time series data from a European XFEL device retrieved from the Influx
database.

Figure 1 shows is thousands of samples generated by an experimental device in European
XFEL. From the current plot, it’s difficult to distinguish between regular and abnormal
data, which justify, together with the requirement of automation, the need for filtering
abnormal observations using statistical or Machine Learning techniques. It should be
noted that data are typically not sampled on a regular grid, which complicates further
analysis.

1.2 Anomaly Detection Techniques

1.2.1 ARMA Model

In recent years, there has been great interest in studying time series data from various
scientific fields. The first common technique is ARMA Model which is a merger of the
auto-regressive model and moving average model. The ARMA model is implemented
on the irregular sample data[5] or evenly sampled data with a combination of Slotted
nearest neighbor re-sampling. As the irregular observation creates a bias on the whole
sample data, the multi-shift slotted technique is combined with ARMA. ARMA model
is usually used in time series data decomposition and forecasting purposes and it works
quite well while the time series data is stationary, which means that statistical properties,
such as mean and variance don’t change over time. Since most of the time series data is
not stationary, it should be converted to stationary first. Then, can be used for further
analysis. Here the mathematical equation of ARMA model presents as follows:

yt = c+ ϕ1yt−1 + ϵt (1)
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Where yt is the value at time step, t, c is a constant, ϕ1 is a coefficient, and ϵt is white
noise term with ϵt N(0, σ2). The AR model however takes an order, p, which will dictates
how many prior time steps to use in the regression. An AR(p) model can be expressed
as:

yt = c+ ϕ1yt−1 + ϕ2yt−2...+ ϕpyt−p + ϵt (2)

This is :

yt = c+

p∑
i=1

ϕiyt−i (3)

Where ϕi is the corresponding coefficient for each respective prior time step yt−i therefor:

ϕ = (ϕ1, ϕ2, ϕi) (4)

The MA Model express as follow:

yt = c+ θ1ϵt1 (5)

In comparison to AR Model, an MA model is a linear regression of the current value
of the series against previously observed white noise error terms. and similarly, to AR,
MA also takes an order term(q), which imposes how many prior errors to be considered.
The MA(q) model expresses as follows:

yt = c+ θ1yt−1 + θ2yt−2...+ θpyt−p + ϵt (6)

Where θj is the corresponding coefficient for each respective prior error ϵtj therefor:

θ = (θ1, θ2, θj) (7)

The combination of AR and MA can be presented as ARMA:

yt = c+

p∑
i=1

θiyt−i +

q∑
j=1

θjϵt−j + ϵt (8)

1.2.2 Fourier Transform

The next method is Fourier Transform, which is widely used in different scientific fields.
The Fourier Transform has more practical implementation in data analysis[6] compare
to theoretical physics. The Fourier Transform performs well when we are exploring the
frequency content of a signal or where each frequency is dominant in that content. The
DFT reveals the whole frequency component of a signal time series and the formula is
as follows:

xk =
N−1∑
n=0

xn.e
−i2πkn/N =

N−1∑
n=0

xn[cos(2πkn/N)− i.sin(2πkn/N)] (9)
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Where N is the number of samples, n is the current sample, k indicate the current
frequency, where k ∈ [0, N − 1] , xn is the sine value at sample n and Xk the matrix
which includes both amplitude, and phase. The last expression is derived from Euler’s
formula, which links trigonometric functions to the complex exponential function ei.x =
cosx+ i.sinx.

Figure 2: Signal Decomposition by Fourier Transform[7]

In Figure 2 the Fourier Transform is applied to an example dataset. The phase compo-
nent indicates the frequency changes after transformation.

The basic concept behind STFT is that STFT breaks up the signal in the time domain
into a number of signals of shorter duration, then transforms each signal into a frequency
domain. The formulation is presented as follows:

STFT{x(T )}(τ, ω)Ξ =

∫ ∞

−∞
x(t)w(t− τ)eiwtdt (10)

In continuous time STFT x(t) is the time-domain signal to be transformed, τ is slow
time; small frame of t, ω is the frequency, w(t) refers to window functions such Hann
window or Gaussian window bell centered around zero and X(τ, ω) is a complex function
that represents the phase and magnitude of the signal over time and frequency; this is
the Fourier Transform of x(t)w(t− τ).

STFT{xn}(m,ω)Ξx(m,ω) =
∞∑

n=−∞

xnwn−me
−iωtn (11)

Where xn is a sequence of discretized time-domain signals to be transformed, m is the
time index, ω is the frequency, wn is the sequence of the discretized window function,
and X(m,ω) is the short Fourier Transform of time domain sequence. In this formula,
time is discretized but the frequency is continuous, if Fast Fourier Transform is being
used, both will be discrete.

1.2.3 Lomb–Scargle Algorithm

Another approach is based on the Lomb–Scargle algorithm. This algorithm shows ro-
bust performance in detecting periodic patterns in unevenly spaced data in time series[8].
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This is a well-known algorithm for detecting and characterizing periodicity in unevenly
sampled time series, and has seen particularly wide use within the astronomy commu-
nity. Recently has been also applied to biological experiment data[9]. In this case, the
biological experiment resulted in periodic patterns in time series and since the Fourier
Transform (FT) does not perform well when values are placed evenly and there is no
missing value, the Lomb–Scargle has been applied. For a time series comprising Nt

measurements XjΞX(tj) sampled at times tj(j = 1, ..., Nt), assumed throughout to have
been scaled and shifted such that its mean is zero and its variance is unity, the normalized
L-S periodogram at frequency is:

Pn(f) =
1

2
{
[
∑

j xjcosω(tj − τ)]2∑
n cos

2(tn − τ)
+

[
∑

j xjsinω(tj − τ)]2∑
n sin

2(tn − τ)
}

(12)

Here ωΞ2πf is the angular frequency and all summations run from j = 1 to j = Nt.
The frequency-dependent time offset τ is evaluated at each ω frequency via:

tan2ωτ =

∑
j sin2ωtj∑
j cos2ωtj

(13)

1.2.4 Standard deviation

Another, simpler, approach to identify anomalies is based on the estimation of the
standard deviation within the specific window frame of time series data. The standard
deviation is the scatter of data points relative to its mean. The formula for population
standard deviation is like the following:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (14)

Where σ is the population standard deviation and µ is the assumed mean. The formula
for sample standard deviation is:

s =

√√√√ 1

n− 1

N∑
i=1

(xi − x̄)2 (15)

Where s is the sample standard deviation and x̄ is arithmetic mean of the observations.

1.2.5 STL Decomposition

When the time series is stationary and seasonal, the STL decomposition (Seasonal and
Trend decomposition using Loess) is applicable to distinguish outliers. It basically sepa-
rates a signal series into seasonal, trend, and residual[10]. The residuals are identified as
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outliers. To measure the strength of trend and seasonality in time series can be expressed
as follows:

yt = Tt + St +Rt, (16)

Where Tt is the smoothed trend component, St is the seasonal component and Rt is a
remainder component.

Figure 3: Signal Decomposition by STL, example data[10]

In Figure3 Three additive components obtained from a robust STL decomposition with
flexible trend-cycle, fixed seasonality and residual are shown.

2 Experiment and Result

In data Analysis in order to understand a problem, it is better to get acquainted with
the data and the problem domain. Thus, In the first stage, the existing implementation,
which is written in python language, is being reviewed. Furthermore, The data has been
retrieved from the Influx database for further exploratory analysis. The exploratory
analysis is performed in Jupyter notebook and python libraries such as pandas, mat-
plolib, h5py, numpy are used.
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Figure 4: Time series data from one of one device

In figure 4, data points are more scattered from the mean for some time intervals.

Figure 5: Standard deviation and correlation trend

In figure 5 The standard deviation change similarly to the mean.
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Since the oscillation in every time frame is not resemble till the end. The standard
deviation technique discussed in the introduction is not applicable to this problem. As
The ARMA is an iterative model to calculate the squared error for every observation.
Therefor, the time and space complexity in this operation is tremendously high. The
other approach like Fourier Transform and Lomb-scargle is a good option for this prob-
lem, if it is being merged with Machine Learning or Deep Learning Model; Models such
as Convolutional Neural networks, XGBoost or Random Forest.

After understanding the data and problem domain, anomaly detection techniques are
available in the literature, being studied. From a different perspective, the windowing
function seems to be applicable to this data, which consists in separating the time series
into small chunks. In particular, the windowing function was applied and the time series
was divided into chunks of 10 seconds. By counting the number of times that an event
occurs within a specific time period, and then dividing the count by the length of the
time period or window frame, the comparison with other frames is possible, and this
gives the frequency rate per frame.

Figure 6: Frequency rate in 10 second time frame

In figure 6 the timestamps are comparable with each other as a result of a new fea-
ture called frequency. This technique is applied to two more devices’ data to make a
comparison between them and to see at which timestamp there is more unstable stream
behavior.
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Figure 7: Comparison of devices data in terms of frequency

Figure 7 shows that the trend of frequencies is between 0.1 and 0.2 Hz, and as a re-
sult those timestamps which have a frequency over 0.2 are potentially to be considered
abnormal.

3 Discussion and Conclusions

The method studied above is simple and fast. One may use it to identify unusually
large variations in the data, by triggering an alarm if the calculated counts raise above
a given threshold. Another approach to be researched is to use such information in
complex Machine Learning models, on which the self-consistency of the preprocessed
information is checked against past events.

4 Acknowledgement

I would like to express my sincere thanks to my supervisors Luca Gelisio, Danilo Enoque
Ferreira de Lima, Arman Davtyan, and Steffen Hauf, who guided me in doing this
project and motivated me to go through during the whole project time enthusiastically.
Especially, Danilo Enoque Ferreira de Lima, who offered plenty of his time and provided
me invaluable advice, which ended up in the successful accomplishment of my project.
At last, I would like to thank DESY and XFEL for providing this opportunity, where,
it became possible to work on time series data analysis project and obtain enormous
experience.

9



References

[1] Mission and vision. online: https://www.xfel.eu/organization/mission/indexeng.html.
accessed: July 19, 2022 - september 8, 2022.

[2] Steffen Hauf, Burkhard Heisen, Steve Aplin, Marijan Beg, Martin Bergemann, Va-
lerii Bondar, Djelloul Boukhelef, Cyril Danilevsky, Wajid Ehsan, Sergey Essenov,
Riccardo Fabbri, Gero Flucke, Daniel Fulla Marsa, Dennis Göries, Gabriele Gio-
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[121]: import h5py
import numpy as np
import pandas as pd

[122]: filename = "/gpfs/exfel/data/user/danilo/influx/new_scraped.h5"

def h5py_dataset_iterator(g, prefix=''):
for key, item in g.items():

path = '{}/{}'.format(prefix, key)
if isinstance(item, h5py.Dataset):

yield (path, item)
elif isinstance(item, h5py.Group):

yield from h5py_dataset_iterator(item, path)

[123]: with h5py.File(filename, 'r') as f:

directory = []
dataset = []

df = pd.DataFrame()

for (path, dset) in h5py_dataset_iterator(f):
directory.append(path)
dataset.append(np.array(dset[()]))

timestamp, value = dataset[::2], dataset[1::2]
timestamp_dir, value_dir = directory[::2], directory[1::2]

[124]: print(len(timestamp), len(value), len(timestamp_dir), len(value_dir))

1458 1458 1458 1458

[125]: dictionary = {'timestamp_dir': [], 'value_dir': [], 'timestamp':[], 'value': []}

for i in range(len(timestamp)):
dictionary['timestamp_dir'].append(timestamp_dir[i])
dictionary['value_dir'].append(value_dir[i])
dictionary['timestamp'].append(timestamp[i])
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dictionary['value'].append(value[i])

[126]: df= pd.DataFrame.from_dict(dictionary)

[127]: import matplotlib.pyplot as plt
import seaborn as sns
import datetime

[128]: from datetime import datetime
from datetime import timedelta
import seaborn as sns

def iter_data(df, start, end):
for index, row in df[start :end].iterrows():

ts = row['timestamp']
ts = (ts*1e9).astype('datetime64[ns]')

plt.figure(figsize=(13,5))
plt.title(row.value_dir)
plt.plot(ts, row.value)
plt.plot(ts, [np.mean(row['value'])] * len(row['value']), label='mean')
plt.plot(ts, [np.std(row['value'])] * len(row['value']), label='std')
plt.legend()
plt.show()

plt.figure(figsize=(11,5))
plt.title(row.value_dir)
plt.scatter(ts, row['value'], marker='o')
plt.tick_params(axis='x',labelsize=11,rotation=90)
plt.tight_layout()

data = pd.DataFrame({'timestamp': ts, 'value': row['value']})
data.set_index('timestamp', inplace=True)
return data

[129]: def get_corr(data):

value_temp = np.array(data['value'])
autocorrelation =[]
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for shift in range(1,len(value_temp)):

correlation = np.corrcoef(value_temp[:-shift], value_temp[shift:])[0, 1]
autocorrelation.append(correlation)

time_temp = np.array(data.index)

plt.figure(figsize=(13,5))
plt.title('correlation coefficient')
plt.plot(time_temp[0:-1],autocorrelation)
plt.show()

[130]: def get_std_mean(data):

time_index = pd.Series(dtype=float, index = data.index)
time_index_mean = pd.Series(dtype=float, index = data.index)

for timestamp in time_index.index:
window= data.loc[:timestamp]
time_index.at[timestamp]= window.std()

for timestamp in time_index_mean.index:
window=data.loc[:timestamp]
time_index_mean.at[timestamp]= window.mean()

plt.figure(figsize=(13,5))
plt.plot(time_index, label='std')
plt.plot(time_index_mean, label='mean')

plt.title('Deviation & Mean Trend', fontsize=20)
plt.legend()
plt.show()

[255]: from datetime import timedelta

def window_func(data):

window_dt = pd.Timedelta(seconds=10)

data["timestamp_window"] = data.index + window_dt

time_unique_endlist = np.unique(data.timestamp_window)
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time_unique_endlist = time_unique_endlist[time_unique_endlist <=␣
↪→max(data["timestamp_window"])]

df_merged = pd.DataFrame()
frequency = []
for time_i in time_unique_endlist:

start_time = time_i - window_dt
rolling_sample = data[(data.index >= start_time) & (data.index <=␣

↪→time_i)]
freq = rolling_sample['value'].nunique()/10
frequency.append(freq)
rolling_sample.insert(0, 'frequency', freq)
df_merged = df_merged.append(rolling_sample)

plt.figure(figsize=(13,5))
plt.bar(df_merged.index, df_merged['frequency'], width=5)
plt.title('Frequency in 10000 ms window frame')
plt.xlabel('timestamp')
plt.ylabel('value frequency(Hz)')
plt.show()

plt.figure(figsize=(13,5))
plt.bar(df_merged.loc[df_merged.frequency > 0.2].index ,df_merged.

↪→loc[df_merged.frequency > 0.2].frequency, width=10)
plt.title('Frequency > 0.2 in window frame')
plt.xlabel('timestamp')
plt.ylabel('value frequency(Hz)')
plt.show()

return df_merged

[ ]: first_data = iter_data(df, 41, 42)

[ ]: get_std_mean(first_data)

[ ]: get_corr(first_data)

[ ]: first_data_freq = window_func(first_data)

[ ]: second_data = iter_data(df, 37, 38)

[ ]: get_std_mean(second_data)
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[ ]: second_data_freq=window_func(second_data)

[ ]: thirth_data = iter_data(df, 45, 46)

[ ]: get_std_mean(thirth_data)

[ ]: thirth_data_freq= window_func(thirth_data)

[ ]: fourth_data = iter_data(df, 89, 90)

[ ]: get_std_mean(fourth_data)

[ ]: fourth_data_freq =window_func(fourth_data)

[ ]: first_data_freq['frequency'].plot(color='orange', figsize=(10, 5))
second_data_freq['frequency'].plot(figsize=(10, 5), figsize=(10, 5))
thirth_data_freq['frequency'].plot(color='black', figsize=(10, 5))
fourth_data_freq['frequency'].plot(color='red', figsize=(10, 5))

APPENDIX


