
Using a Neural Network for displaced τ -jet tagging
Bjorn Kerby Dimayuga

Supervised by: Mykyta Schedrolosiev, Isabel Melzer-Pellman and Dirk Krucker

September 7, 2022

Abstract

In this report we explore different deep neural networks that can be exploited
in the context of jet tagging problems. We specifically compare Space Neural
Networks (SNN), a distance-weighted graph neural network (weighted GNN), and
ParticleNet, the current state of the art for jet tagging. Their performances are
evaluated in a beyond the Standard Model framework (BSM), where the super-
symmetrical partner of the τ lepton, the stau τ̃ , is displaced from the primary
vertex and decays into a pair of τ and charged neutralino χ̃0

1 or gravitino (G̃). We
discuss the tuning of the hyperparameters and the different trial procedures done
to enhance the SNN’s performance. The goal is to obtain the best performance
of SNN with minimal computational costs and complexity by using floating point
operations (FLOPs), trainable parameters and CPU/GPU time as benchmarks.

1

Contents

1. Introduction 3
1.1. SUSY . 3
1.2. Jets and hadronic decays . 3
1.3. CMS detector . 4
1.4. Object reconstruction . 5

2. Machine learning in Particle Physics 6
2.1. SNN . 7

3. SNN Tuning 9
3.1. Objectives and input space . 9
3.2. Hyperparameter tuning . 9

3.2.1. Embedding layer . 11
3.2.2. Feature updating layer . 11
3.2.3. Aggregator layer . 14

3.3. Performance comparison . 15
3.4. Issues . 16

4. Conclusions and outlook 17

References 18

A. Variables and scaling 20

B. Jet daughters features 20

C. Batch AUC and loss plots 20

2

1. Introduction

1.1. SUSY

Supersymmetry is a speculative extension of the Standard Model of particle physics
that contributes to the resolution of a number of unresolved issues related to our present
knowledge of the basic principles governing the behavior of the universe. This extra
proposed symmetry between fermions and bosons, which is the subject of an intense
search effort at the Large hadron Collider, in its simplest form predicts the presence of
a variety of new particles.
In searches for the direct production1 of scalar tau leptons or the production of super-
symmetric particles, e.g. tau slepton or SUSY tau τ̃ , thought to decay through scalar
tau leptons (Fig. 1), significant progress has been made. Scalar tau lepton decays to
their Standard Model counterparts produce difficult experimental signals, necessitating
specialized reconstruction algorithms, which are frequently built using machine learning
methods.

Figure 1: Decay of the SUSY tau τ̃ to Standard Model tau and charged neutralino or gravitino

1.2. Jets and hadronic decays

In recent years, particle physics research has grown extremely active in the field of
understanding the internal structure of hadronic jets. The Large hadron Collider collab-
orations are increasingly using jet substructure approaches in their experimental analysis
as they look for both novel physics and Standard Model measurements.
In collider experiments, jets are collimated sprays of hadrons that are frequently con-
nected to the generation of an elementary particle carrying a color charge, such as quarks
and gluons. The strong force, which is quantized by quantum chromodynamics in the
Standard Model of particle physics, controls how they evolve (QCD). The quark or gluon
that starts a jet may emit more partons, creating a parton shower, or collimated shower
of quarks and gluons, which eventually decay into the hadrons (π, K, p, n,...) seen in
the detector. Jets are present in the great majority of LHC events (that one is interested

1For a more detailed summary of tau slepton production, see the Appendix

3

in). They are the most numerous and intricate objects measured by ATLAS and CMS,
two multifunctional LHC experiments.

Figure 2: Generic interaction sequence for the search of a very BSM resonance that decays into
electroweak-scale particles that subsequently decay hadronically.

Figure 2 depicts a typical circumstance of interest for BSM searches employing jet sub-
structure: a proton-proton collision produces a hefty new resonance X with a mass of
O(1) TeV. This heavy BSM resonance swiftly decays into lighter states Y, e.g. W/Z/H
bosons or lighter BSM particles, with masses near the EW scale. Because their mass
is substantially lower than the mass of the decaying particle X, particles Y often have
a large transverse momentum (pT). Because their mass is substantially lower than the
mass of the decaying particle X, particles Y often have a large transverse momentum.
Finally, if a particle Y decays hadronically due to its enormous boost, its decay product
is collimated and reconstructed into a jet in the lab frame. The goal of jet substruc-
ture is therefore to identify a signal jet, which is generated by boosted heavy particles
such as Y, from background jets, which are generally QCD jets generated by quarks
and gluons. The majority of techniques for completing this classification task take a
two-step approach: first, the jet is cleaned up (groomed), which involves removing soft
radiation that is unlikely to originate from the decaying resonance. Next, one computes
observables (e.g. jet-shape observables and prong-finders) specifically made to distin-
guish between signal and background jets based on the energy distribution among the
remaining jet constituents. These observables aim to disentangle the different topologies
that characterise signal and background jets [1].

1.3. CMS detector

A superconducting solenoid with a 6 m internal diameter and a 3.8 T magnetic field
is the centerpiece of the CMS equipment shown in Figure 3. Within the solenoid vol-
ume, there are silicon pixel and strip trackers, lead tungstate crystal electromagnetic
calorimeters, and brass and scintillator hadron calorimeters, each consisting of a barrel
and two endcap sections. The pseudorapidity (η) coverage offered by the barrel and end-
cap detectors is expanded by forward calorimeters. Gas-ionization chambers built into
the steel flux-return yoke outside the solenoid are used to detect muons. A two-tiered

4

trigger mechanism is used to choose events of interest. The first level (L1), which is
made up of specialized hardware processors, selects events at a rate of about 100 kHz
with a fixed latency of about 4 µs [2] using data from calorimeters and muon detectors.
The second stage, referred to as the high-level trigger (HLT), lowers the event rate to
about 1 kHz before data storage and consists of a farm of processors running a version
of the entire event reconstruction software that has been tuned for quick processing [3].

Figure 3: CMS detector cross section

1.4. Object reconstruction

A jet definition can be seen as made of a few essential building blocks: the jet algorithm,
which is the recipe itself and a set of parameters associated with free knobs in the
algorithm. A typical parameter, present in almost all jet definitions used in hadron
colliders is the jet radius which essentially provides a distance in the rapidity-azimuth
plane above which two particles are considered as no longer part of the same jet, i.e. no
longer considered as collinear.
Over the past few decades, a number of jet algorithms have been proposed. They
typically fall under two big categories: cone algorithms and sequential-recombination
algorithms. Sequential recombination algorithms are based on the concept that, from
a perturbative QCD viewpoint, jets are the product of successive parton branchings.
These algorithms therefore try to invert this process by successively recombining two
particles into one. This recombination is based on a distance measure that is small
when the QCD branching process is kinematically enhanced. Thus, one successively
recombine particles which minimise the distance in order to mimic the QCD dynamics
of the parton shower. Most of the recombination algorithms used in the context of
hadronic collisions belong to the family of the generalised-kt algorithm.
Searches for new phenomena that consider signatures with τ leptons have gained great
interest in proton-proton (pp) collisions at the CERN LHC. This particle is the most

5

massive among leptons (≈ 1.8GeV) and decays 35% of the time in leptons and 64% in
hadrons, typically into either one or three charged mesons (predominantly π±) plus up
to two neutral pions. As the electrons and muons originating from τ decays are difficult
to distinguish from those produced in the primary pp interaction, the algorithms for τ
reconstruction and identification aim at hadronic tau decays (τh). Object reconstruction
in the CMS detector starts from particle-flow (PF) algorithm [4] that combines data
from the CMS subdetectors to recognize and reconstruct the charged hadrons, neutral
hadrons, photons, muons, and electrons (pfCandidates) that emerge from proton-proton
collisions. The missing transverse energy vector, the jets, the τh candidates, and the
lepton isolation are all then recreated using these particles. hadronic decays of τ leptons
in CMS are reconstructed and identified by the “Hadrons plus Strips” (HPS) algorithm
[5], designed to reconstruct individual decay modes of the τ . The algorithm looks into
the constituents of the jets to reconstruct the neutral pions that are present in most τh
decays. The algorithm achieves an identification efficiency of 50 – 60% with a probability
for quark and gluon jets, electrons, and muons to be misidentified as τ lepton between
per cent and per mille levels. Standard CMS reconstruction/identification workflow
works very poorly for the τ particles that are not coming from the primary vertex but
from some displaced vertex in the CMS detector. Such τ particles can come from some
long-lived SUSY particle (SUSY tau, τ̃), for instance.
The use of PF objects allows for the reconstruction of jets. Using R = 0.4 as the distance
parameter, the anti-kT jet clustering technique [6] is employed with the application of
typical jet energy corrections. A multivariate-based jet detection technique is used to
eliminate jets produced by pileup collisions. This algorithm benefits from variations in
the configuration of energy deposits in a jet cone.

2. Machine learning in Particle Physics

Machine Learning (ML) techniques have been an important ingredient in particle col-
liders for a quite a while. Event processing, particle identification and classification,
energy tracking and direction measurements in calorimeters are just a few of the appli-
cations where these techniques are used. Boosted Decision Trees became state of the
art and played a crucial role in the discovery of the Higgs boson by the ATLAS and
CMS workgroup [7]. There are currently many studies to demonstrate the advantage
and potential applications of Deep Learning (DL) algorithms on LHC’s data taking and
data processing workflows. Nevertheless, the actual numbers of DL models deployed in
LHC experiments are quite low2 and most of the studies are proof-of-concept demonstra-
tions. One of these models is called DeepTau [8], which is a multiclass τ identification
algorithm based on a convolutional deep neural network (DNN). In order to achieve an
optimal tau identification performance, DeepTau combines information from the high-
level reconstructed tau features together with the low level information from the inner
tracker, calorimeters and muon sub-detectors using particle flow candidates, electrons
and muons reconstructed within the tau isolation cone.

2Examples of DNNs for particle identification in CMS are B Tagger, Top Tagging, DeepAK8

6

The potential physics content of displaced τ particles decaying hadronically is substan-
tial: by using DL architectures, one can possibly deploy an algorithm that has a very
high accuracy and minimal computational costs. It can substitute the two way classi-
fication used in the current jet reconstruction algorithm. The current state of the art
for jet tagging is based on particle clouds, called ParticleNet [9]. Deep residual learning
[10], graph neural networks (GNNs) [11] and their distance weighted version [12] and
Convolutional Neural Networks (CNNs) [13] can be combined to construct a powerful
tool for the purpose of jet tagging displaced particles.

2.1. SNN

Space Neural Network, or SNN, is a DNN developed for τ particle reconstruction in CMS.
It follows the same principles as GravNet/GarNet [12]: it receives as input a B×V ×FIN

dataset, which is fed to a few layers of convolution mechanism with which collective
information from the vertex and its surroundings is gathered to produce the FOUT output.
This architecture is what we also call a dynamic GNN where the connections between the
nodes and vertices of the graph G is not a fixed constant before the network is evaluated
but rather a network the learns itself how to construct them in each layer. This SNN
also implements the residual learning in its layers.

Base architecture of SNN The base architecture that is hypertuned is composed of
B = 500 batch examples, V = 50 detector hits and FIN = 30 features. The feature
vector is represented by the vector

x⃗i = {x1, x2, . . . ,∆η,∆ϕ} (1)

where η is the pseudorapidity and ϕ is the azimuthal angle.
The architecture is composed of:

• feature scaling layers: a scaling based on jet-momentum is applied to the features.
The three methods used are

1. normal

x′ = clamp

(
x− xmean

σ
,−5, 5

)
(2)

2. linear/interval:

x′ = clamp

(
x− xmean

xmax − xmin

,−1, 1

)
(3)

3. categorical

To reduce the disbalance between the pT and η of the jets, a non uniform bin
reweighting was also implemented.

7

• SNN message passing mechanism (MPM): we index the batch number with b =
1, . . . , 500, the number of detector hits with i = 1, . . . , 50, the connections of a
hit with itself and another hit as j = 1, . . . , 50 and the features with k. With
these indexing, the k−th feature vector of i−th hit connected with the j−th hit
in the b−th batch is f b

ijk, which is a 4th rank tensor. The SNN MPM acts on the

feature vector f bij to produce a new learned feature vector f̃ bij. Mathematically, this
is expressed by

f̃ bij = MLP

[
concatenate

(
f bij,

50⊕
j=1

Wb
ij ⊙ f bij ⊙Mb

ij

)]
(4)

where M b
ijk is the masking vector referring to either the presence or absence of

the i−th hit in b−th batch3, Wb
ijk = exp(−10dbijk) is the weight tensor calculated

from the distance tensor dbijk between the i−th hit and all other j hits in the b−th

batch4,
⊕50

j=1 is the chosen aggregation procedure, i.e. simple sum
∑50

j=1,j ̸=i, ⊙
is the element-wise multiplication and MLP is simply the multilayer perceptron.
This layer is represented in figure

Figure 4: The message passing mechanism where the feature vectors inside the nodes are concatenated
with the aggregated weighted feature vectors of all remaining nodes

• Wiring connections

• Batch Normalization layer, activation layer with ReLU and dropout layers with a
rate of 0.1

3it is therefore the same value in the index j and k
4same value in the k index

8

• Aggregator layer

• Dense layers with batch norm, activation and dRopout layers

• Output layer with sigmoid activation

The overall learning rate of the architecture is 0.001.

3. SNN Tuning

3.1. Objectives and input space

The main objective of the neural networks we discuss here is to separate the jet τh from
QCD jets. Our background data are composed of light quark and gluon jets from pT -
binned QCD samples that are combined without their cross-section weights; our signals
are AK4 jets matched to τh from the LLSTau sample.
The selection criteria used for the background, signal and both of them is in Table
1. As for the input space, only jet daughters are taken (pfCand jetDaughter==True).

Signal Background S+B
gen tau pt = 20 genJet pt = 20 jet pt ≥ 20
gen z < 100 |genJet eta| < 2.4 |jet eta| < 2.4
gen xy < 50 dR < 0.4
dR < 0.4 no e, µ, τe, τµ

Table 1: Selection criteria for the signal and background jets

The pfCandidates are taken in a sequence with nmax ≤ 50: {pf1, pf2, . . . , pfnmax}. If
nmax < 50, the remaining empty 50− nmax are masked by a vector. Every pfCandidate
pfn is a feature vector xn = {x1, x2, . . . }+{∆η,∆ϕ}. The comparison of the pT and η of
the background and signal is in Figure 5 while the decay distance of different τ̃ masses
are in Figure 6.
The final sample contains 13 million events evenly divided to signal and background,
where 20% is preserved for testing. τ from STAU M100 10cm and jets from TT-
ToSemiLeptonic is used for evaluation of ROC curves. We have big amounts of data,
so we observe the performance of the architecture for every modifications in just one
epoch, and by looking at the batch AUC and loss trends.
The list of the feature vector and their scaling is in Table 3 in the Appendix.

3.2. Hyperparameter tuning

Before the actual optimization of the hyperparameters, we studied the effects of:

1. changing the wiring layer after the batch normalisation and activation layers

2. eliminating the embedding layers of the categorical variables

9

(a) η distribution in log scale of signal (STAU)
and background (QCD) jets

(b) pT distribution in log scale of signal
(STAU) and background (QCD) jets

Figure 5: Comparison between signal and background jets

Figure 6: decay distance of different τ̃ masses: only distances < 50 cm are considered

The results of these changes are: 1) doing the wiring after the normalisation and ac-
tivation layers and 2) eliminating the embedding layers make the DNN perform worse.
We also looked at the performance when the wiring periods are changed to Twiring =
{0, 1, 2, 3, 4, 5}. The results are in the Appendix, where we observe that Twiring = 3
performs the best. Lowering or raising the Twiring doesn’t help the NN gain considerable
performance enhancement.
The base architecture of O(160k) trainable paraemeters with which we compare the

10

results of the hyperparameter optimizations is presented in Figure 7

Figure 7: Base architecture of SNN with the message passing mechanism (MPM) implementation and
the wiring connections (blue)

3.2.1. Embedding layer

I eliminate the embedding layers and add n = 1, 2 layers of 1 × 1 convolution layers
with nodes = 50. Comparing it our base architecture, I observe a gain in performance,
mostly due to the fact that it has more trainable parameters.

3.2.2. Feature updating layer

I study the performance of the architecture for different aggregation procedures
⊕

:

• max pooling:
⊕

j = maxj(. . .)

50⊕
j=1

Wb
ij ⊙ f bij ⊙Mb

ij = maxj
(
Wb

ij ⊙ f bij ⊙Mb
ij

)
(5)

11

• mean pooling:
⊕

j =
∑

j

nmax

50⊕
j=1

Wb
ij ⊙ f bij ⊙Mb

ij =

∑50
j=1,j ̸=i W

b
ij ⊙ f bij ⊙Mb

ij

50
(6)

• global sum:
⊕

j =
∑

j

50⊕
j=1

Wb
ij ⊙ f bij ⊙Mb

ij =
50∑

j=1,j ̸=i

Wb
ij ⊙ f bij ⊙Mb

ij (7)

• Weighted average with the valid number of pfCandidates:

50⊕
j=1

Wb
ij ⊙ f bij ⊙Mb

ij =

∑50
j=1,j ̸=i W

b
ij ⊙ f bij ⊙Mb

ij∑50
j=1M

b
ij1

(8)

The results for these modifications indicate that the best aggregator is the weighted one.
The complete weighted average, i.e. considering the weight tensor W

50⊕
j=1

Wb
ij ⊙ f bij ⊙Mb

ij =

∑50
j=1,j ̸=iW

b
ij ⊙ f bij ⊙Mb

ij∑50
j=1Wb

ij1M
b
ij1

(9)

is not an optimal aggregating procedure. As the NN goes deeper in its SNN MPM layers,
some of the nodes in the abstract learned space probably spread far away from the other
nodes. This means that distances D2 → ∞ and the weights W → 0. In fact, we observe
that the training stops abruptly because of the presence of nans after a few batches.

Changing the scale of distance metric I looked at different scales (k = 1, 10, 100) of
the exponential function exp(−k ·D2) used in the weighting operation. The results tell
us that the best scale of the distance between the nodes is O(10): with this constant we
collect the right amount of information from nearby nodes without it being contaminated
with noise and useless data contained in farther nodes.

Changing the dimensionality In the base architecture, distances between the nodes
are always calculated in the 2D plane determined by the last two features in the feature
vector, e.g. ∆ϕ and ∆η in the first layer of SNN MPM block. I changed this distance
calculation by considering only the last feature (1D case), the last three features (3D) and
the last four (4D). The results of these modifications tell us that we can potentially gain
performance enhancement if we calculate in higher dimensions. However, I observe an
anomaly where the 2D case seems to be better than the 3D case, whereas I expected the
result to be the other way. By repeating the experiments with the same configuration,
we obtain the performances where it’s visible that the possible gain in performance is
largely hindered by the gradient descent variance and statistical fluctuations. This must
be studied in dimensions higher than 4D to look if an enhancement could be achieved.

12

Performing dimensional wise aggregation Looking at the equation 4, we concatenate
the weighted feature vector to the original feature vector before passing it to the MLP
layer. This weighting is done in the 2D plane. I modified this operation by considering
the dimensions singularly: instead of calculating the 2D distance, I calculated the 1D
distance for both of the features. In this case, instead of having just one weighted vector,
I have two of them that will be concatenated to the original feature vector

concatenate(f bij, f
b
ij,weighted1

, f bij,weighted2
) (10)

This operation was done to observe if we can gain performance enhancement by aggre-
gating information in single dimensions. One could do this for all the features obtaining

concatenate(f bij, f
b
ij,weighted1

, . . . , f bij,weightedn) (11)

I studied this operation just for the 2D case and it performs worse than the base archi-
tecture.

Changing the potential function I also tried different distance metrics with varying
properties. func1 = 1−σ(10D2−5) is approximately a constant function in the vicinity
of the nodes and decays exponentially5 after, while the other two functions, func2 =
1 · σ(10D2)(1 − σ(10D2)) and func3 = exp(−D4/0.01), decay more rapidly and less
rapidly to 0 than the base exponential function, respectively. The exponential distance
metric with k = 10 is still the best metric to calculate the weights. Further hypertuning
this constant k can be potentially beneficial for the SNN architecture. For now, the
exponential function seems to capture the most information from the neighbouring nodes
and eliminating the useless information from farther nodes.

Figure 8: The three different distance metrics tested: the yellow is the exponential metric, the green
one is a slower converging function, the blue one is faster converging to 0 and the red one is
the constant function in some region

5σ(x) = 1/(1 + ex) is the sigmoid function

13

3.2.3. Aggregator layer

We study the effects of changing the aggreation procedure after the SNN MPM blocks.
We implement the same changes present in the feature updating layer, i.e max pooling,
mean pooling, global sum and normalizing the sum by the number of valid pfCandidates.
We found that global sum is the best aggregation procedure for this layer, followed by
global average pooling. This indicates that we potentially gain from the architecture
being sensitive to the number of valid pfCandidates.

Figure 9: Full architecture of SNN after the hypertuning with the added 2 layers of 1× 1 Convolution
and two different aggregating procedures

14

3.3. Performance comparison

The final version of SNN (Figure 9) after the hypertuning has O(370k), which is com-
parable to ParticleNet’s trainable parameters. We train both of this architecture for 5
epochs and we observe, through the number of floating point operations (FLOPs), that
the SNN architecture is ten times lighter than the ParticleNet. During the SNN tuning,
our background data are composed of light quark and gluon jets from pT -binned QCD
samples that are combined without their cross-section weights: they’re summed up and
fed to the neural network during the training. Similarly for the signal, τh jets from three
different samples with different τ̃ masses are combined. We evaluate the performance
of our architecture by looking at the ROC-AUC per batch. However, we must take a
further step to evaluate the performance of our NN. The kinematic properties of the
training dataset are not physically realistic, and the AUC/ROC is not entirely repre-
sentative of the performance in a physics analysis. In order to do so, we evaluate the
AUC/ROC using signal jets from the τ̃1(100) sample only, and background jets from a tt̄
sample. We then use our architecture trained for 5 epochs to distinguish these jets and
calculate the jet misID probability (the false positive rate) and Tau ID efficiency (the
sensitivity, true positive rate) for the construction of the ROC curve. One other variable
in which we can divide these ROC curves is the displacement between the decay vertex
of the SM τ and the decay vertex of τ̃ , expressed by Lrel. If the DeepTau algorithm is
also used after the HPS algorithm, the number of jets not from τh (NoHPS) must also
be included in the denominator to be able to compare HPS+DeepTau’s and SNN ’s or
ParticleNet ’s ROC curves. The HPS algorithm has a very limited tau signal efficiency
that it doesn’t even reach a sensitivity of 1 in the ROC curves, as can be seen in Figure
10 and Figure ??.
We want a tagger that has low jet mis-identification probability for high tau identification
efficiency. In Figure 10 and Figure ??, a better architecture is nearer to the lower right
part of the graph. These ROC curves are evaluated in different displacement regions to
observe how our architectures perform. The visible results for our full SNN tagger are:

• competitive performance in comparison to DeepTau+HPS in low displacement
regions (0.2 cm < Lrel < 1 cm)

• a decrease of mis-identification rate in comparison with the base SNN architecture,
SNNlite,

misIDentification probability tauID efficiency
≈ 0.4× 10−3 60%
≈ 1× 10−3 70%
≈ 0.5× 10−2 60%
≈ 0.9× 10−2 90%

Table 2: misID rate for different tauID efficiency of the full SNN architecture

• more visible performance gains in low displacement regions

15

(a) (b) (c)

(d) (e) (f)

Figure 10: ROC curves for the DeepTau+HPS, SNNlite, SNNfull and ParticleNet architectures in the
low pT region and for six different displacement region Lrel in the CMS tracker

• comparable performance to ParticleNet, only slightly worse in some efficiency re-
gions

3.4. Issues

There are a few issues that arose during the tuning of the architecture and must be
addressed before any further procedures:

1. SNN (37 GFLOPs) appears to be ten times lighter than ParticleNet (417 GFLOPs),
but the CPU run time indicates ParticleNet as the faster architecture.

2. The main bottleneck of SNN architecture is the tiling of the tensors inside the
SNN MPM block, which is done two times. This might be directly correlated to
the slower CPU run time of SNN

3. sigmoid activation function for the output layer was used instead of the theoret-
ically correct softmax activation, because the network performs better with the
latter

16

4. Conclusions and outlook

CMS continues its effort to search for Beyond-the-Standard-Model particles. None of
these searches found any substantial excess in event yields over the predicted background
from Standard Model processes, hence the search results are interpreted in terms of
production cross section exclusion limits. The latest additions to the set of searches
are the searches for direct production of tau sleptons, which are extremely difficult due
to the small production cross sections and the challenging reconstruction of final states
with tau leptons.
Machine learning models have already become ubiquitous in the field of high energy
physics, and its discovery potential continues to grow each day. The current CMS two-
step workflow for tau reconstruction, the HPS+DeepTau algorithm, is poorly sensitive
to the displaced tau coming from the tau slepton. A dedicated tau jet tagging procedure
is necessary to study this SUSY interaction. The current state of the art for jet tagging
is based on particle clouds, the ParticleNet.
A lighter architecture, the Space Neural Network, based on distance-weighted GNN, has
been developed for the task of jet tagging. In this report we explored the modifications
and the hyperoptimization of this network. We looked at the batch loss and batch
AUC to discern what modifications were beneficial for the performance, and we trained
the network for five epochs before comparing it to ParticleNet. With the use of floating
point operations (FLOPs), we observed how our architecture SNN stands at 37 GFLOPs,
which is ten times smaller than ParticleNet’s 417 GFLOPs. We also observed how our
optimization led to SNN being more competitive in terms of mis-identification rate
decrease: it is now comparable to the state-of-the-art ParticleNet and just slightly worse
in some efficiency regions. We push for the improvement of this SNN architecture because
of its small computational complexity. A lot of improvement is still feasible, e.g. better
feature engineering or addition of new machine learning models, and there are some
issues to be addressed regarding CPU run time and discrepancies between softmax and
sigmoid functions but, overall, SNN is a promising jet tagger.

17

References

[1] Simone Marzani, Gregory Soyez, and Michael Spannowsky. Looking Inside Jets.
Springer International Publishing, 2019. doi: 10.1007/978-3-030-15709-8. url:
https://doi.org/10.1007/978-3-030-15709-8.

[2] CMS Collaboration. “Performance of the CMS Level-1 trigger in proton-proton
collisions at

√
s = 13 TeV”. In: (2020). doi: 10.48550/ARXIV.2006.10165. url:

https://arxiv.org/abs/2006.10165.

[3] CMS Collaboration. “The CMS trigger system”. In: (2016). doi: 10.48550/ARXIV.
1609.02366. url: https://arxiv.org/abs/1609.02366.

[4] Benjamin Kreis. Particle Flow and PUPPI in the Level-1 Trigger at CMS for the
HL-LHC. 2018. doi: 10.48550/ARXIV.1808.02094. url: https://arxiv.org/
abs/1808.02094.

[5] CMS Collaboration. “Performance of reconstruction and identification of τ leptons
decaying to hadrons and ντ in pp collisions at

√
s = 13 TeV”. In: (2018). doi:

10.48550/ARXIV.1809.02816. url: https://arxiv.org/abs/1809.02816.

[6] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti-kt jet clustering
algorithm”. In: (2008). doi: 10.48550/ARXIV.0802.1189. url: https://arxiv.
org/abs/0802.1189.

[7] Tianqi Chen and Tong He. “Higgs Boson Discovery with Boosted Trees”. In: Pro-
ceedings of the 2014 International Conference on High-Energy Physics and Ma-
chine Learning - Volume 42. HEPML’14. JMLR.org, 2014, pp. 69–80.

[8] “Performance of the DeepTau algorithm for the discrimination of taus against jets,
electron, and muons”. In: (2019). url: https://cds.cern.ch/record/2694158.

[9] Huilin Qu and Loukas Gouskos. “ParticleNet: Jet Tagging via Particle Clouds”.
In: (2019). doi: 10.48550/ARXIV.1902.08570. url: https://arxiv.org/abs/
1902.08570.

[10] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. doi: 10.
48550/ARXIV.1512.03385. url: https://arxiv.org/abs/1512.03385.

[11] Zonghan Wu et al. “A Comprehensive Survey on Graph Neural Networks”. In:
(2019). doi: 10.48550/ARXIV.1901.00596. url: https://arxiv.org/abs/
1901.00596.

[12] Shah Rukh Qasim et al. “Learning representations of irregular particle-detector
geometry with distance-weighted graph networks”. In: (2019). doi: 10.48550/
ARXIV.1902.07987. url: https://arxiv.org/abs/1902.07987.

[13] Zewen Li et al. “A Survey of Convolutional Neural Networks: Analysis, Applica-
tions, and Prospects”. In: IEEE Transactions on Neural Networks and Learning
Systems (2021), pp. 1–21. doi: 10.1109/TNNLS.2021.3084827.

18

https://doi.org/10.1007/978-3-030-15709-8
https://doi.org/10.1007/978-3-030-15709-8
https://doi.org/10.48550/ARXIV.2006.10165
https://arxiv.org/abs/2006.10165
https://doi.org/10.48550/ARXIV.1609.02366
https://doi.org/10.48550/ARXIV.1609.02366
https://arxiv.org/abs/1609.02366
https://doi.org/10.48550/ARXIV.1808.02094
https://arxiv.org/abs/1808.02094
https://arxiv.org/abs/1808.02094
https://doi.org/10.48550/ARXIV.1809.02816
https://arxiv.org/abs/1809.02816
https://doi.org/10.48550/ARXIV.0802.1189
https://arxiv.org/abs/0802.1189
https://arxiv.org/abs/0802.1189
https://cds.cern.ch/record/2694158
https://doi.org/10.48550/ARXIV.1902.08570
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1902.08570
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.48550/ARXIV.1901.00596
https://arxiv.org/abs/1901.00596
https://arxiv.org/abs/1901.00596
https://doi.org/10.48550/ARXIV.1902.07987
https://doi.org/10.48550/ARXIV.1902.07987
https://arxiv.org/abs/1902.07987
https://doi.org/10.1109/TNNLS.2021.3084827

Acknowledgements

As summer slowly fades to its slumber, your memories within will remain in its full
wonder...
This experience was nothing short of amazing. Almost two months of physics, science,
adventures and friendships. I’ve learnt a lot, not just about machine learning and deep
neural networks, but mostly about how beautiful human relationships are. First of all,
I want to take a moment to acknowledge my supervisor, Mykyta. Getting chosen as his
student and learning a ton about computing and neural networks is really a privilege.
He considered me as his equal, and that put me in a comfortable position to work
in this beautiful project of τ jet tagging. I also wanted to acknowledge Soham; he was
practically my second supervisor, helping me with a lot of technical problems and always
available when I needed him. I also want to mention Isabel Melzer-Pellman and Dirk
Krucker for their precious suggestions throughout the whole program. A few people also
helped me get through the two month programme with a smile in the face: thanks to
the people at my office, Gabriele, Benno and David.
Last and not the least, I want to acknowledge the people with whom I spent the most
time eating, laughing, travelling, drinking, partying, cooking, talking, gossiping, singing
and many other things: we have the iτ lians, Jacopo (and his capybaras), Francesca (and
her Einmal ist keinmal tattoo), Beppo (and his Bari accent), Matteo (and his humongous
appetite), Edo (and his cool shirts), Matilde (and her camera) and Francesco (and his
tallness); the non iτ lians, Paul (and his frenchy english accent), Erik (and his Šakotis),
Max (and his free beers), Alain (and his Sunset instead of Schanze) and David (and his
Cuban charm). Thank you all from the bottom of my heart. Good luck in life and I
hope we see each other again.

19

A. Variables and scaling

Variable scaling
pfCand pt linear
pfCand eta linear
pfCand phi linear

pfCand lostInnerHits linear
pfCand nPixelHits linear
pfCand caloFraction linear
pfCand hcalFraction linear

pfCand rawCaloFraction linear
pfCand rawHcalFraction linear

pfCand mass normal
pfCand nHits normal
pfCand dxy normal

pfCand dxy error normal
pfCand dz normal

pfCand dz error normal
pfCand track chi2 normal
pfCand track ndof normal

pfCand valid categorical
pfCand charge categorical

pfCand hasTrackDetails categorical
pfCand particleType categorical

pfCand pvAssociationQuality categorical
pfCand fromPV categorical
pfCand deta no scaling
pfCand dphi no scaling

pfCand puppiWeight no scaling
pfCand puppiWeightNoLep no scaling

Table 3: Feature vector and their scaling methods

B. Jet daughters features

C. Batch AUC and loss plots

20

	Introduction
	SUSY
	Jets and hadronic decays
	CMS detector
	Object reconstruction

	Machine learning in Particle Physics
	SNN

	SNN Tuning
	Objectives and input space
	Hyperparameter tuning
	Embedding layer
	Feature updating layer
	Aggregator layer

	Performance comparison
	Issues

	Conclusions and outlook
	References
	Variables and scaling
	Jet daughters features
	Batch AUC and loss plots

