
DESY Summer Student Project Report

Energy Regression with Graph Neural
Networks on EM-showers in the

HGCAL

Sena Durgut, Bogazici University

Supervised by: M. Scham, I. Melzer-Pellmann, D. Kruecker

September 22, 2022

1

Abstract

The CMS Collaboration will change the current end-cap calorimeter with the
new High Granularity Calorimeter (HGCAL) in order to meet the challenges of
the upcoming High Luminosity (HL) phase. The HGCAL is designed to be a
high granularity imaging calorimeter with greatly improved spatial resolution and
timing, resulting in better discrimination if pile-up events, better shower sepera-
tion and higher precision compared to the current end-cap calorimeter. However
data analysis challenges arise due to the HGCAL’s irregular geometry, it is dif-
ficult to find a grid-based representation for the HGCAL. Without a grid-based
representation, many of the frequently used machine learning techniques like Con-
volutional Neural Networks (CNN) cannot be applied to the HGCAL data. On
the other hand, Graph Neural Networks have received increasing interest lately
by researchers for their capability to offer exceptionally powerful representations
of complex systems and they allow one to represent the new irregular geometry of
the detector. In this report the energy regression with Graph Neural Network on
EM-showers in the HGCAL generated by photons (Energy ∈ [50,100] GeV, η=2)
is presented. Various graph operators and their optimization were studied.

2

Contents

1 Introduction 4
1.1 The CMS HGCAL . 4
1.2 Graphs . 5
1.3 Graph Neural Networks (GNNs) . 6

2 Regression with GNNs 7
2.1 Evaluation Method . 7
2.2 Linear Regression . 7
2.3 Graph Convolutional Network (GCNConv) 8
2.4 Graph Isomorphism Network (GINConv) 9
2.5 Changing the Dataset . 11
2.6 Memory Efficiency . 11

3 Conclusion 14

3

1 Introduction

1.1 The CMS HGCAL

In the context of high energy physics (HEP), the ratio of the event rate to the total
cross section is defined as luminosity. It serves as a crucial indicator of how many
interactions an accelerator is capable of producing.
As part of the High Luminosity (HL) phase of the CMS Experiment, the High Lu-

minosity (HL) upgrade of the existing Large Hadron Collider (LHC) faces numerous
obstacles. The HL-LHC will integrate ten times higher luminosity than the LHC, creat-
ing considerable issues for radiation tolerance and event pile-up on detectors, particularly
for in the areas close to the beampipe. The existing calorimeter end-caps composed of
electromagnetic (CE-E) and hadronic (CE- H) sections were not designed to deal with
such luminosity and its effects. As part of the HL-LHC upgrade, the CMS Collabo-
ration will replace the present endcap calorimeters with a high granularity calorimeter
(HGCAL) (Figure 1) [1]. The HGCAL has been designed to be a high granularity im-
age calorimeter with vastly enhanced spatial resolution and timing, resulting in superior
differentiation of pile-up events, improved shower separation, and subsequently more
precise measurements.

Figure 1: Present forward calorimeter (in yellow)

In the hadronic part of HGCAL, the scintillator sections have a grid-like structure,
whereas the inner parts that contain the silicon is in the shape of a hexagon (Figure
2). Thus, the HGCAL possesses quite irregular geometry along the margins of these
sections. In addition, it has a greater number of channels compared to the previous
end-cap calorimeters. Because of the irregular geometry, one is forced to use particular
flexible data structures, such as point clouds and graphs, when conducting further data
analysis using machine learning.

4

Figure 2: Layer in the CE-H with both silicon hexagons and scintillator tiles.

1.2 Graphs

One of the most widely used deep learning methods is the Convolutional Neural Net-
works (CNNs). (citation needed). In addition to the standard matrix multiplication
that is carried out by traditional feedforward neural networks, CNNs implement at least
one additional linear mathematical operation that is referred to as a convolution. They
are highly efficient at processing data with a grid-like topology. The HGCAL’s irregular
geometry, on the other hand, cannot be transformed into a grid in any way. The existing
software frameworks provide a neighborhood information based on the adjacency of the
cells in which the hits are recorded.
A graph is a data structure consisting of two primary components: vertices and edges.

It is possible to provide an adequate definition of a graph by denoting it as G = (V,
E), where V is the set of vertices (or nodes), and E is set of the edges representing the
connections between the nodes. Graphs are flexible tools that can effectively represent
intricate network connections within a system.
The most common way to express a graph is via its adjacency matrix A. An adjacency

matrix is a 2-D array of V ×V vertices. Each row and column represents a vertex. If the
value of any element in the position aij is 1, it represents that there is an edge connecting
vertex i and vertex j.

5

Figure 3: A simple illustration of an undirected graph and its adjacency matrix: Each
entry in the matrix indicates whether a connecting edge exists between the
corresponding nodes.

Another important feature of graphs is that nodes can contain feature vectors and
edges can have edge weights associated with them, which makes it possible to store
more information within the graph.

1.3 Graph Neural Networks (GNNs)

Recently, tremendous progress has been achieved in the field of Graph Neural Network
(GNN) research. Notably, a growing number of unique GNN architectures have been
developed, including GCN, GIN, GraphSAGE and a number of others.
GNNs use a message passing mechanism to propagate information across the graph by
exchanging information between adjacent nodes. The following is a concise summary of
the underlying process for the message passing in GNNs:

1. Every node in the graph computes a message for each of its neighbors.
2. Messages are sent, and every node aggregates the messages it receives.
3. After receiving the messages, each node updates its attributes.

Ultimately, the entire process can be formulated as:

x′
j = update(xi, aggregate([xj, j ∈ N(i)])),

where xi and xj stands for the node features and N(i) denotes one-hop distance neigh-
bors of node i. Different message passing layers are constructed through the combination
of a wide variety of aggregate and update functions.

6

2 Regression with GNNs

Regression is the process of predicting a target variable given a set of features.In
this work, the energy of the particle generating an EM-shower in the HGCAL was
regressed on the simulated hits of this shower to predict the energy of the particle causing
the shower. PyTorch Geometric, which is an extension of the PyTorch deep learning
framework and enables a wide variety of applications relating to graphs, was utilized
for all of the work that was carried out. The features include energy and the position
(x,y,z) values for each of the hits in the shower. To simulate these showers, photons
with an energy of [50, 100] GeV and η =2 with η being the spatial coordinate describing
the angle of a particle relative to the beam axis. Adam optimizer was used with the
parameters of weight decay being 1.0× 10−4 and the learning rate being 2× 10−4. The
batch size was 50, number of training batches was 5000, the number of the validation
batches was 100 and the number of testing batches was 1. The number of input features
is 4.

2.1 Evaluation Method

The evaluation of a regression model cannot utilize accuracy metrics as in classification
tasks. Instead, the error metrics that have been developed for regression problems are
utilized. Mean Squared Error (MSE) was used for evaluation in the early stages of this
project. It is calculated by squaring the difference of the true value of the target variable
energy and the predicted value:

MSE =
1

n

n∑
i=1

(Etrue − Epredicted)
2

Because the predicted values are the energies of the particles, taking the square of the
difference amplified the error for high energies whilst diminishing it for low energies. As
a result, a change in the error function was required. Mean Relative Error (MRE) was
used afterwards for the evaluation. It is calculated by taking the absolute value of the
difference between true value and the predicted value of energy and dividing by the true
value:

MRE =
1

n

n∑
i=1

∣∣∣∣Etrue − Epredicted

Etrue

∣∣∣∣
2.2 Linear Regression

Linear Regression is a very straightforward type of regression model where a linear
hypothesis is constructed between the features and the target variable. It served as a
baseline to compare the GNN architectures.

7

2.3 Graph Convolutional Network (GCNConv)

A Graph Convolutional operator proposed by Kipf et.al. and implemented in PyTorch
Geometric was used. It’s node-wise formulation is given as:

x′
i = Θ⊤

∑
j∈N (v)∪{i}

ej,i√
d̂j d̂i

xj

with

d̂i = 1 +
∑

j∈N (i)

ej,i

where ej,i denotes the edge weight from source node i to target node i (default: 1.0)
[2]

The architecture of the model with the GCNConv layers is shown below:

Figure 4: Implementation of a neural network in PyTorch Geometric using GCNConv
layers

8

The evaluation results were promising with the best training MSE being 18.52 and the
best validation MSE being 28.72.

Figure 5: MSE vs. batches for GCNConv

2.4 Graph Isomorphism Network (GINConv)

Graph Isomorphism operator, proposed by Xu et. al. is inspired by The Weisfeiler-
Lehman Isomorphism Test, an algorithm for determining whether two graphs are topo-
logically identical. Two graphs are considered topologically identical if there is a map-
ping between them that preserves the node adjacencies. The developers of this operator
assert that it possesses superior power than that of any other graph operator. [3]
Its node-wise formulation is:

x′
i = hΘ

(1 + ϵ) · xi +
∑

j∈N (i)

xj


where ϵ is a slight variation that is added to the calculation and can be a trainable

parameter or a fixed scalar value and hΘ denotes a neural network, .i.e. a Multi Layer
Perceptron (MLP). Implementation in this work is illustrated in Figure 6.

9

(a) (b)

Figure 6: a) Architecture of the entire model. b) There are linear layers, activation
functions and one batch normalization layer inside one GINConv block.

The following is the MSE across batches plot obtained with this architecture.

Figure 7: MSE vs. batches for GINConv

10

2.5 Changing the Dataset

The first dataset used was limited to the most energetic 128 hits in the cells. Then a
dataset that did not have such limitation was reproduced, meaning a great increase in
the size of the graph.

Figure 8: MSE vs. batches for GINConv with the full dataset

2.6 Memory Efficiency

In order to collect messages from the neighboring nodes, the MessagePassing interface
of PyG uses a gather-scatter procedure. Under the hood, the MessagePassing imple-
mentation produces a code that looks as follows:

11

Figure 9: Gather-scatter scheme in PyTorch

It has the disadvantage of explicitly materializing the source and target node features,
xj and xi, resulting in a high memory footprint on large and dense graphs [4]. Because
of this, the increase in the size of the graph mentioned in the previous section was
costly in terms of the GPU memory in PyTorch and the models failed to converge.
However, GINConv is one of the GNN implementations that does not need an explicit
materialization of xj and xi. Namely, the GINConv layer

x′
i = MLP

(1 + ϵ) · xi +
∑

j∈N (i)

xj

 ,

can also be implemented as:

X′ = MLP ((1 + ϵ) ·X+AX) ,

where A denotes a sparse adjacency matrix of shape [num_nodes, num_nodes]. This
formulation allows to leverage dedicated and fast sparse-matrix multiplication imple-
mentations. So, the class SparseTensor was introduced in PyG ≥ 1.6.0 which imple-
ments fast forward and backward passes for sparse-matrix multiplication. So instead
of inputting the edge index matrix, edge_index is transformed into the SparseTensor

format using the ToSparseTensor method.

(a)

(b)

Figure 10: a) DataBatch instance with edge index. b) DataBatch instance with sparse
tensor transform

12

And inside the forward function, SparseTensor format is given as an input.

(a)

(b)

Figure 11: a) Edge index tensor is given as input to the layers. b) Edge index transformed
into the sparse tensor format is given as input to the layers.

The predicted outcomes are not seen when the maximum memory allocated in PyTorch
GPU is observed during the increasing of the inner dimensions of the GINConv model
(Figure 11). This stays as an unresolved issue due to time constraints of the project.

13

Figure 12: Memory Allocation in the PyTorch GPU by the inner dimensions in GINConv
layers

3 Conclusion

After all the modifications in the code, the final results for model comparison are
depicted in Figure 13.

14

Figure 13: Comparison of the results

A few of the take-aways can be summarized as follow:

1. GNN’s are promising for regression tasks.

2. GINConv performs better than GCNConv in any case, especially for larger graphs.

3. Using larger graphs increases the regression performance but is costly in terms of
memory allocation for large inner dimensions.

4. Memory efficiency is a problem to be resolved.

15

References

[1] CMS Collaboration, CMS TDR-019

[2] PyTorch Geometric (PyG) Documentation

[3] Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. How Powerful Are Graph
Neural Networks? 2019

[4] PyTorch Geometric (PyG) Documentation

16

