
RNVP normalising flows for computing

molecular vibrational wave functions -

Report

Sebastian Mendoza

August 2022

Abstract

This project deals with a widely applicable and quite ubiquitous problem in

physics: solving Schrödinger’s Equation for complex systems. While analyt-

ical solutions are scarce, many different methods have been created to find

approximate solutions to the problem. One of the most current obstacles is

the curse of dimensionality: the amount of data needed for converging ap-

proximations scales exponentially with the number of dimensions. Here, we

try to alleviate this exponential dependency by applying modern Machine

Learning methods (namely Normalizing flows) to the numerical methods for

finding eigen-energies and eigenstates; we perform numerical approximations

and mathematical proofs to show the efficacy of this approach.

1

Contents

1 Background Knowledge and Introduction 3

1.1 Physics . 3

1.2 Machine Learning . 4

1.2.1 RNVP model . 5

1.3 Mathematics . 6

2 Implementation 7

2.1 The RNVP model . 7

2.2 Integration . 9

2.3 Optimization . 10

3 Results 10

3.1 H2S Simulation . 10

3.2 Mathematical Results . 12

4 Conclusion 12

2

1 Background Knowledge and Introduction

1.1 Physics

The physical equation governing the setup of the problem is given by the Time Inde-

pendent Schrödinger’s Equation (TISE)

Ĥ |ψ⟩ = E |ψ⟩ (1)

where Ĥ describes a Hermitian Operator acting on state vectors |ψ⟩ ∈ H, with real

eigenvalues E.

For high dimensional systems, this equation can become arbitrarily difficult, with no ex-

isting analytical solution for most cases. While several approximations can be made to

simplify the scenario itself, the solution can also be approximated numerically without

simplifying the scenario.

In our case, we will attempt to approximate the groundstate |ψ0⟩ with a state |ψΘ⟩, and
then descend as close as possible to the real state. One way to do this is by minimizing

energy eigenvalue as, assuming the eigenstates of Ĥ form a basis for H, we have that:

⟨ψΘ| Ĥ |ψΘ⟩ =
∞∑

i,j=0

ᾱi αj ⟨ψi| Ĥ |ψj⟩ =
∞∑
i=0

|αi|2Ei ≥
∞∑
i=0

|αi|2E0 = E0 (2)

We can therefore approximate the groundstate energy simply by minimizing the expec-

tation value ⟨Ĥ⟩ψΘ
. This is often reffered to as the Variational Principle.

If we project to a hyperplane orthogonal to the corresponding approximated ground-

state |ψ̃0⟩, we have a similar scenario for the next smallest eigenvalue, and can therefore

repeat the process to calculate an arbitrary number of eigenstates and eigen-energies.

In fact, given a basis for a problem {|φi⟩}i, we can define the (possibly infinite dimen-

sional) matrices H̃ and S with (H̃)ij = ⟨φi| Ĥ |φj⟩ and (S)ij = ⟨φi||φj⟩, the secular

equations [4] give the following equation for the eigen-energies:

det
(
H̃ − E · S

)
(3)

Which, when {|φi⟩}i are orthonormal, have S become the identity matrix and therefore

equation (3) becomes analogous to finding the eigenvalues of H̃. However, with an

infinite basis these approaches are not in general solvable numerically. A possible solution

3

is to truncate the degree to which we consider the eigensates. That is, we define a

truncation parameter Nmax such that we redefine the approximated state as

|ψΘ⟩ :=
Nmax∑
k=0

αk |ψk⟩

Then the problem of finding the energies amount to finding eigenvalues of a finite dimen-

sional matrices, which can be approximated numerically. The energies found through

the eigenvalues are only approximations to the actual energies, with the errors of these

approximations depending on Nmax.

It has been shown that, while the energy approximations converge as Nmax → ∞, this

solution suffers from the curse of dimensionality: the parameter Nmax depends exponen-

tially on the number of dimensions d of the system for convergence. A possible solution

to this problem rises from Machine Learning.

1.2 Machine Learning

To avoid increasing the parameter Nmax exponentially in relation to d, one could consider

adding more flexibility to the basis. We will consider coordinate space to achieve this

(|ψ⟩ =∧ ψ(x)). Given a basis {φi}i, we define the augmented basis elements using a

coordinate transformation.

φAi (x) = φi(g(x)) ·
√

det
dg

dx
(4)

where
√

det dg
dx

is the square root of the determinant of the Jacobian of this coordinate

transformation, which is only used to preserve normalization:

⟨φAi ||φAj ⟩ =
∫
φAi (x) · φAj (x)dx =

∫
φi(g(x)) · φj(g(x))

(
dg

dx

)
dx

=

∫
φi(g) · φj(g)

(
dg

dx

)
· dx
dg

dg = ⟨φi||φj⟩ = 1

We can notice that defining a different basis through this form, instead of some, albeit

more flexible, arbitrary neural network {NNi(x)}∞i=0 ensures two things:

• The augmented basis elements {φAi }i constitute a basis for the space H when

considered without a truncation parameter (which is not given for any set {NNi}i)

• Orthonormality is preserved between the augmented basis elements {φAi }i

4

Figure 1: Normalizing Flows Standard Layout [5]

We also need to impose two further restrictions on the function g for the previous

manipulation to be valid:

• g must have an inverse

• g must be differentiable and have a differentiable inverse (g must be a diffeomor-

phism)

The benefits given using this approach might be subtle: orthonormality preservation

is needed to maintain the equivalence between the secular equations and diagonalizing

H̃, while having basis preservation is needed for the convergence of the approximated

eigenvalues to the actual eigenvalues as Nmax → ∞.

These requirements lead into a possible model for g: Normalizing Flows. This model is

entirely based on finding diffeomorphisms {fk}nk=1 and composing them (as diffeomor-

phisms are closed under composition) as shown in Fig. 1.

z = (fn ◦ fn−1 ◦ · · · ◦ f1)(x)

We can then define different schemes for normalizing flows to test the method.

1.2.1 RNVP model

The Real-valued Non-Volume-Preserving model is a type of normalizing flow in which

each layer fk(x) is given by

gk(x) = Pk[x] +Qk[fk(x)] with fk(x) = esk(Pk[x]) ⊙ x+ tk(Pk[x]) (5)

5

Figure 2: RNVP basic layer [3]

where⊙ denotes the Hadamard or elementwise product, Pk is a projection over ⌊dimx/2⌋
of the components of x, Qk ≡ id−Pk is an orthogonal projection over these components,

and tk and sk are arbitrary differentiable functions with same input and output dimension

(and with sk(x) ̸= 0 ∀x). This function is invertible and differentiable, and a more

conceptual illustration is provided in Fig. 2

1.3 Mathematics

One of the most important aspects of this approach is convergence. We need to assure

that, at the limit of Nmax → ∞, the approximation states and energies approach the

true states and energies. The CMI Theory team is currently working on proving that a

sufficient condition to guarantee convergence is to show that, if g is the function used in

the augmented basis, then the system converges to the real results if g is a symbol for

the Schwarz Space S. That is:

f ◦ g ∈ S ∀f ∈ S (6)

6

where the Schwarz space is defined as

S :=

{
f

∣∣∣ sup
x∈Rd

∣∣∣∣xβ ∂α∂xαf
∣∣∣∣ <∞ ∀α, β ∈ Nd

}
(7)

Thus, to guarantee convergence using the augmented basis as Nmax → ∞ with g being

the RNVP model, it is only needed to show that functions defined through the RNVP

paradigm are symbols for the Schwarz space.

2 Implementation

2.1 The RNVP model

The whole implementation was performed using Jax and Flax [1], with the models

following the standard torch-like structure. In particular, the function of the normalizing

flow itself is given as

1 class RNVP(nn.Module):

2 """ Implement a model of RNVP without inheriting from the nn.Module

class

3 """

4

5 num_layers: int

6 dim: int

7 hidden_lyrs = [32, 32, 32]

8

9 """ Args:

10 num_layers (int): number of layers (affine transformations) in

the flow

11 dim (int): dimension of the input states

12 masks (ndarray): arrays to ’mask’ the dimensions that remain

invariant on each layer

13 hidden_lyrs (list): list of hidden layers sizes

14 """

15

16 def setup(self) -> None:

17 feats_num = self.hidden_lyrs + [self.dim]

18 self.t_nets = [MLP(feats_num) for _ in range(self.num_layers)]

19 self.s_nets = [MLP(feats_num) for _ in range(self.num_layers)]

20 return None

21

7

22 @nn.compact

23 def __call__(self , x: jnp.ndarray , mode=’Forward ’) -> tuple:

24 """ Compute a forward or backward pass through the normalizing

flow

25

26 Args:

27 x (jnp.ndarray): input vector

28

29 Returns:

30 tuple: mapped input and the logarithm of the determinant of

the jacobian of the entire transformation

31 """

32 param_scale , epsi = 1e-1, 0.05

33 masks = create_masks(self.num_layers ,

34 self.dim , jax.random.PRNGKey (0))

35 z = x

36 if mode.casefold () == ’forward ’:

37 for i in reversed(range(self.num_layers)):

38

39 z_ = masks[i] * z

40 s = self.s_nets[i](z_) * (1-masks[i])

41 _s = truncated_exp(s+epsi)

42 t = param_scale*self.t_nets[i](z_) * (1-masks[i])

43 z = (1 - masks[i]) * (z - t) /_s + z_

44

45 elif mode.casefold () == ’backward ’:

46 z = x

47 for i in range(self.num_layers):

48 z_ = z*masks[i]

49 s = self.s_nets[i](z_)*(1 - masks[i])

50 _s = truncated_exp(s+epsi)

51 t = param_scale*self.t_nets[i](z_)*(1 - masks[i])

52 z = z_ + (1 - masks[i]) * (z * _s + t)

53

54 else:

55 raise ValueError(’mode must be either "Forward" or "

Backward"’)

56

57 return z

Listing 1: RNVP Model

Two things that are worth noting:

8

1. We employ a function named ‘truncated exp’ rather than ‘exp’. This is for conver-

gence issues, as using the ‘exp’ function instead of some polynomial that shares the same

behaviour close to 0 would make the RNVP model not necessarily a symbol of S. This
truncated exp is given by e.g.,

1 def truncated_exp(x):

2 return 1+x+x**2/2+x**3/6+x**4/24+x**5/120+x**6/720

Listing 2: truncated exp function

2. The ‘MLP’ model used is given by:

1 class MLP(nn.Module):

2 """ MLP to be used for ’t’ and ’s’ functions in RNVP model """

3

4 feats_num: Sequence[int]

5 activ_func: Callable = nn.sigmoid

6

7 @nn.compact

8 def __call__(self , input) -> jnp.array:

9 for idx , feat in enumerate(self.feats_num):

10 input = nn.Dense(features=feat)(input)

11 if idx != len(self.feats_num) -1:

12 input = self.activ_func(input)

13 return input

Listing 3: MLP model

where using the sigmoid function (or any other activation function with bounded deriva-

tives) is crucial ensuring the model is a symbol for S

2.2 Integration

In the case of H2S, we decided to use the harmonic oscillator basis as a primitive basis

for the problem. We are then able to use a Gauss-Hermit Quadrature to integrate over

functions: ∫ ∞

−∞
f(x)e−x

2

dx ≈
n∑
i=0

wif(xi) (8)

where n is the number of quadrature points, xk is the k-th root of the n-th Hermite

polynomial Hn, and wk =
2n−1n!

√
π

n2[Hn−1(xk)]2
.

This is relevant, as the quadrature points can be calculated only once (under the aug-

mented coordinates g(x)) and then used for every epoch.

9

2.3 Optimization

Using the matrix described in the Secular Eqs. (3) and the Gauss-Hermite integration

in Eq. 8, we can calculate the loss function as:

L =
∑

ζ∈σ(H̃)

ζ

with σ(·) being the spectrum of an operator (or a usable subset of it). Here we

have to use Gauss-Hermite quadrature in y = g(x) to calculate the components of

H̃ = ⟨φAi | Ĥ |φAj ⟩ =
∫
dyĤ(y)φAi (y)φ

A
j (y) (mapping the quadrature points to the orig-

inal space using g−1 and performing the appropriate change of variables). Note that

this is not equivalent to talking the trace, as sometimes we are only interested in mini-

mizing an initial subset of the spectrum of Ĥ (to find the lower energies of the operator).

Additionally, a modified version of the RNVP model was used for g, were instead of

simply using an RNVP function, a different paradigm was made:

g = L−1
fixed ◦ tanh ◦RNVP ◦ tanh−1 ◦Lfixed ◦ Llearn

where Lfixed is a fixed (no optimizable parameters) linear operation which scales the

input vectors to [−1, 1], and Llearn is a learnable linear operation which is intended to

best fit the input values to the primitive basis.

3 Results

3.1 H2S Simulation

The code was implemented in an H2S molecule, where the parameter Nmax was varied

over a range of numbers and the convergence of the energy approximations was measured.

The RNVP model was compared to a model using only Llearn and no neural network

(labeled ‘LIN’), and to a different paradigm named Invertible ResNet (labeled ‘LIB’).

The results for a fixed angle are shown in Fig. 3, and they clearly show that both

IResNet and RNVP outperform the convergence rate of ‘LIN’ for the first 10 energy

levels.

A different numerical test was applied to the entire vibrational system for H2S (without

a fixed angle). The results are shown in Fig. 4. Here we can observe, to a larger extent

10

Figure 3: H2S energy levels for stretching system

11

Figure 4: Energy error for H2S vibrational spectra (RNVP:— and LIN:- -)

(50 energy levels), that the optimization brought by RNVP outperforms LIN.

3.2 Mathematical Results

On a more theoretical level, it was also shown that augmented basis for the RNVP

paradigm has the desirable convergence properties. More specifically, it was shown that

the RNVP model, with its neural networks being Multi-Layer Perceptron models using

sigmoid activation functions, and its scaling function being a positive polynomial of this

neural network, is a symbol for S.
With this, defining the augmented basis using the RNVP model guarantess convergence

to the real eigenstate as Nmax → ∞.

4 Conclusion

Using the augmented model with RNVP-paradigm functions was theoretically shown to

yield results that converge to the actual eigenfunctions corresponding to a hamiltonian

Ĥ, and the simulations suggest that it outperforms using no neural networks (at least in

H2S case). Further tests in higher-dimensional systems should be performed to analyse

convergence in dependence of dimension and extrapolate its behaviour.

12

References

References

[1] The JAX authors. Jax reference documentation. 2020. url: https://jax.readthedocs.

io/en/latest/.

[2] Ivan Kobyzev, Simon J. D. Prince, and Marcus A. Brubaker. “Normalizing Flows:

An Introduction and Review of Current Methods”. In: (2019). doi: 10.1109/TPAMI.

2020.2992934. eprint: arXiv:1908.09257.

[3] Ullrich Köthe. Introduction to Normalizing Flows. Mar. 2021.

[4] Libretexts. 7.2: Linear variational method and the secular determinant. July 2022.

[5] Phillip Lippe. Tutorial 11: Normalizing flows for image modeling. 2022. url: https:

/ / uvadlc - notebooks . readthedocs . io / en / latest / tutorial _ notebooks /

tutorial11/NF_image_modeling.html.

13

