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Abstract

The rapidity anomalous dimension (RAD), or Collins-Soper (CS) kernel, defines
the scaling properties of TMD distributions and can be extract from the exper-
imental data, from the direct comparison of differential cross-sections measured
a different energies. In this work we test this new method of determination of
the CS kernel for gluon iniciated processes, explicitly for pair production of Higgs
boson processes.
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1 Introduction

The QCD vacuum is still a big thing. Its complex structure origins lots of fundamental
and unanswered questions such as thoses regarding dark matter and confinament mecha-
nism. The confinament mechanism is the phonemenon that color-charged particles (such
as quarks and gluons) cannot be isolated, and therefore prevents us from any direct ex-
ploration of the hadron’s insides. Even though direct explorations are not possible,
physicist still manage to come up with indirect approaches using, mainly, the analysis
of the differential cross-section of particle scattering. Let’s just say that in a scattering
process we can always split the total differential cross-section into two terms, one pertur-
bative term, which means that we can use perturbation theory to determinate its value;
and a second non-perturbative term, but universal, it does not depend on the specific
process. This non-perturbative, universal, term is known as RAD (rapidity anomalous
dimension), or Collins-Soper (CS) kernel, which emerges from the factorization theorem
for the transverse-momentum differential cross-section, and was first introduced by [1].

The CS is not a characteristic of a hadron, it provides us information about the long
range forces acting on quarks that are imposed solely by the non-trivial structure of the
QCD vacuum. Despite being a part of the factorization theorem, the CS kernel is con-
ceptually different from other distributions. The CS kernel contains information about
the soft-gluon exchanges between parton and it also dictates the evolution properties for
the TMD distribution functions.

(a) CS determination for
different approaches

(b) CS determination for
Drell-Yan process

Figure 1: Previous results of CS kernel determinationn for Drell-Yan process

At present, there are different approaches to the determination of the CS kernel 1a. In
this work, we use a direct way of extracting the CS kernel from the scattering data,
using lattice computation to form proper cross-sections ratios. This approach is a recent
method suggested by [2]-[3]. Figures 1b shows the results obtained for the CS kernel
in Drell-Yan process using this approach. The results obtained were good enough to
encourage us to test this method in new processes [3]. This calculations were done using
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Figure 2: Feyman diagrams contributing to Higgs boson pair production via gluon fusion at
leading order

for CS of quark TMD distributions but in this work we decided to study the CS for
gluon TMD distributions for double Higgs Bosons production processes.
One of the primary goals of the LHC programme in the next decade is the detailed
study of Higgs boson properties. In particular, the high luminosity upgade of the LHC
is expected to provide direct constraints on the higgs boson trilinear coupling from Higgs
boson pair production, which may reveal whether the Higgs potential is indeed Standard
Model-like. A detailed theoretical understanding of the Higgs boson pair production
processes is thus mandatory.
The phenomenology of multi-Higgs boson final states will provide complementary infor-
mation to that found from single Higgs physics at the LHC. Due to generically small
inclusive cross sections and a difficult signal vs. background discrimination, the best
motivated multi-Higgs final states at theLarge Hadron Collider are Higgs boson pair
final states, of which gluon fusion gg → hh is the dominant production mode 2.
Hence, in this letter, we decided to test this new method’s power for gluon TMD distri-
bution functions using the pseudodata generated by the CASCADE event generator.

2 Method

This method is founded on the leading power transverse momentum dependent (TMD)
factorization theorem. We consider the Di-Higgs production process g1 + g2 → h1 +
h2. The cross section for the Di-Higgs pair production at small transverse momentum,
described by the TMD factorization formula is

dσ

dQ2dydq2T
=

2π

9

α2
em(Q)

sQ2
|Cv(Q, µQ )|2

∫ ∞
0

dbbJ0(bqT )

×
∑
q

e2qfq,h1(x1, b;µQ, Q
2)fq,h2(x2, b;µQ, Q

2) (1)

where Q, y and qt are the invariant mass, rapidity and tranverse momentum of the
double Higgs system, µQ ∼ Q is the factorization scale, s is the invariant mass of the
initial state, eq are the electric charges of quarks, αem is the fine-structure constant and
J0 is the Bessel function of the first kind. The variables x1 and x2 are longitudinal
momentum fractions.
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x1 =
Q√
s
ey, x2 =

Q√
s
e−y (2)

The hard coefficient function CV is entirely perturbative and known up to next-to-next-
to-next-to-leading order (N3LO). The functions f are non-perturbative unpolarized
TMD distributions.
The CS kernel is hidden in the Q-dependence of TMD distributions that is described by
a pair of evolution equations

dfq,h(x, b;µ, ζ)

d lnµ2
=
γF (µ, ζ)

2
fq,h(x, b;µ, ζ) (3)

dfq,h(x, b;µ, ζ)

d ln ζ
= −D(b, µ)fq,h(x, b;µ, zeta). (4)

Here, γF is the TMD anomalous dimension which is perturbative and known up N3LO,
and ζ is the non-perturbative CS kernel. Thus, to extract the CS kernel one must explore
the Q-dependence of the cross-section.
The essential complication of any phenomenological analysis with the TMD factorization
is that all non-perturbative functions are defined in the position space. We perform the
inverse Hankel transform of the cross-section

∑
(s, y,Q, b) =

∫ ∞
0

dqT qTJ0(qT b)
dσ

dQ2dydq2T
(5)

Formula 1 is valid at small qT/Q, and the corrections to it are estimated as ∼ 1% at
qT = 0.1Q. Consequently,

∑
is accurately (up to 1%) described in the terms of TMD

distributions for b & (0.1Q)−1.
The main idea of the method is to compare

∑
’s measured at different Q’s (Q1 and

Q2), such that the TMD distributions f exactly cancel in the ratio. To perfom the
cancellation we adjust the values of s such that the variables x1,2 are identical. We
compute ∑

(s1, y, Q1, b)∑
(s2, y, Q1, b)

=

(
Q2

Q1

)4

Z(Q1, Q2)e
2δ(b;Q1→Q2), (6)

where s1/s2 = Q1/Q2
2. The function Z is entirely perturbative

Z(Q1, Q2) =
α2
em(Q1)|Cv(Q1, µQ1)|2

α2
em(Q2)|Cv(Q2, µQ2)|2

. (7)

The function ∆ is resulted from the evolution of TMD distribution to the same scale by
equations 3 and 4,

∆(b,Q1 → Q2) =

∫
P

(
γF (µ, ζ)

dµ

µ
−D(b, µ)

)
, (8)
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where P is a path connecting points (µQ1 , Q
2
1) and (µQ2 , Q

2
2) in the (µ, ζ)-plane. Thus,

the only non-perturbative content in the formula 5 is the CS kernel.
To invent the formula 5 we use the rectangular contour for the integrations path in eqn.7
and find

(D)(b, µ0) =
ln
(∑

1∑
2

)
− lnZ(Q1, Q2)− 2∆R(Q1, Q2;µ0)

4 ln(Q2/Q1)
− 1, (9)

where
∑

1 /
∑

2 is shorthand notation for the ratio 5, and

∆R(Q1, Q2;µ0) =

∫ µQ1

µQ2

dµ

µ
γF (µ,Q1)− 2 ln

(
Q1

Q2

)∫ µQ2

µ0

dµ

µ
Γcusp(µ), (10)

with Γcusp being the cusp anomalous dimension. The last term in eqn.9 evolves CS
kernel to the scale µ0, which is used to compare different extractions. Apart of the ratio∑

1 /
∑

2 all terms in equation 8 are perturbative, and nowadays known up to N3LO.
Therefore, the formula 8 can be used to extract CS kernel directly from the data without
any further approximation.
Practically, the experimental measurements for differential cross-sections are presented
by a collection of points in bins of (Q, y, qT ). Therefore, the transformation 4 cannot be
computed analytically but by the discrete Hankel transform. Herewith, one should find
a balance between the statistical precision of dΣ (which usually decreases at low-qT ) and
the range of b (larger b requires lower qT ). Alternatively, the experimental curve can be
fit by an analytical form, and the transformation 4 is performed analytically. This path,
however, introduces uncertainty due to the curve parameterization.
The integration over qT leaves intact the dependence on Q and y, which can be used o
increase the statistical precision. We introduce

Σ(s,Q, b) =

∫ Q+δQ

Q−δQ
dQ2

∫ δy

δy

dydΣ(s, y,Q, b) (11)

where δQ and δy are sizes of the bin. These function can be also used in the ratio Σ1/Σ2

with the only restriction that δQ << Q. In this case, the effects of variation of Q within
the bin could be neglected. There is no limitation for δy, except that δy is the same for
Σ1 and Σ2 .

3 Analysis of the results

To test the proposed approach, we study the pseudo-data generated with the CASCADE
event generator. The PB algorithm does not explicity employ the TMD factorization
theorem. There are no parameters specially dedicated to the CS kernel, and thus the CS
kernel emerges via the interplay of the parameters controlling the PB-TMD evolution in
the CASCADE generator.
The inverse Hankel transform has been perfomed using the algorithm. The algorithm
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expects that the input function vanishes beyond the presented domain. It is a good
approximation since the cross-section for the double Higgs process drops rapidly at
large-qT .
The effective range and accuracy of the discrete Hankel transform depend on the density
and range of the input cross-section. So, to obtain a stable curve at the large-b, one
needs a large number of points at small-qT . At large values of b, the inverse function is
sensitive to the finite-bin effects and becomes unstable. The examples of the cross-section
in momentum and position spaces are shown 3.
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Figure 3: Differential cross-section for double Higgs process, for
√
s = 6− 8TeV

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b [GeV 1]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(b
;m

0)

Figure 4: CS kernel determination for gluon iniciated process

Figure 4 shows the CS kernel function for double Higgs process. We can notice the func-
tion becomes unstable for large values of b, due to, as we mentioned before, the inverse
Hankel/Fourier transform. We also see how the functions ends, for b ∼ 0.75GeV −1. It
seems like the model restricts the shape of D for large values of b. The function also
suggest the existence of a flat region, certain saturation point where b changes its value
”faster” than D, of course all this right before the instability region.
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3.1 Statistical Uncertainty of the CS kernel function

We employ the boostrap method to estimate the propagation of statistical uncertainty
from the momentum space to the position space (see figure 5). For example, consider
the ratio r = a/b between two measurements a and b, perfomed with partially over-
lapping data. The nominal measuremente r0 is performed using the nominal dataset,
while a series of boostrap measurements are perfomed using an ensemble of pseudo-
experiments. A replica measurement ri = ai/bi is performed using replica datsets i.
In such replica measurements, the shared events have the same fluctuations away from
the nominal dataset, which will affect the measurements coherently: in the same direc-
tion if the measurements are positively correlated or in opposite direction if they are
anti-correlated. The distribution of measurements ri can be treated as the probability
distribution function of r and an uncertainty on this quantity can be derived from this
distribution, from its standard deviation if appropriate [5]. During the sampling, we also
vary the central value of qT within a bin, which allows us to estimate the uncertainty
due to finite bin size at large-b.
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(b) CS kernel for double Higgs production pro-
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Figure 5: Statistical uncertainty of the CS kernel function

4 Conclusions

In this work, we tested a new method of direct extracting of the CS kernel from the data,
using the proper combination of cross-section with different kinematics, for gluon TMD
distribution functions. We chose pair production of Higgs bosons processes to develop
our research. Although, some considerations were taken into account to simplify the
analysis, the model calculation puts a serious restriction on the shape of the CS kernel
at large values of b. Still, figure 6 shows that this method can be use to evaluate the CS
kernel behavoir for gluon iniciated processes.
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Figure 6: Comparison between the CS kernel function for Drell-Yan process vs double Higgs
production process
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