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Abstract

The Strebel differential is introduced as a mathematical tool to parameterise the
moduli space Mg,n × Rn

+, also providing a combinatorial structure derived from
the orbifold of ribbon graphs.

We examined its role in holographic theories, with a focus on the case of
AdS3/CFT2.

An analysis of particularly tractable cases of planar 4-point functions is made.
We first study the UV behaviour of a generic solution, then we proceed to the
explicit calculation of the differential relative to the Square (and the Whale) critical
graph and finally, we make a perturbative expansion around the latter.
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1. Introduction

The purpose of this report is to provide an introduction to the Strebel differential and
some of its applications. Defined indirectly by a theorem by Strebel, its usefulness lies in
the fact that it allows you to parameterise the moduli space of marked Riemann surfaces
(actually Mg,n×Rn

+) and associate each point in that space with a ribbon graph. For this
reason, it is often employed in holographic theories to explicitly reconstruct the integrand
of the string theory from the correlation functions of the corresponding (putative) field
theory. There are other numerous applications in maths (dessins d’enfant, Witten’s
conjecture, etc...) not treated here.
This work is divided as follows. In section 2 we introduce all the necessary theoretical
background. In 2.1 we define the object that is the focus of the work (following [1]) and
go on to state the theorem that makes it so interesting, also providing a sketch of how
one can actually construct a surface from a graph.
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In the following subsection 2.2, we provide a quick review of the work that led to the
derivation of AdS3/CFT2 duality [2, 3, 4, 5], thus attempting to give a physical moti-
vation behind the study of the mathematical tool. We first explain how it is possible to
define a sigma model with target space a symmetric orbifold. In order to calculate the
correlation functions of this theory, it is useful to introduce the so-called twist operators
that implement the group action via monodromy: Feynman diagrams are constructed
for these operators and the covering map method is introduced (examples of which are
presented). This map is then related to the spectral curve of a Penner-like matrix model
and that to a Strebel differential. Finally, it is explained how the covering map can be
interpreted as the string worldsheet.
Section 3 is entirely devoted to the calculations performed during the summer project:
starting with the simplest case, i.e. a planar four-point function, we studied its UV
behaviour in 3.1 following [6]. We moved on to an even simpler case, finding the exact
solution relative to the Square (or Whale) graph in 3.2. We finally perturbed the solution
by splitting one of the two double roots into two simple roots (separated by a small
epsilon): at the level of the graph, this is equivalent to adding a (small) diagonal to the
square [7].
In future work, we hope to extend the analysis to surfaces of higher genus, as well as
generalise some aspects of the AdS3/CFT2 duality.

2. Theoretical preliminaries

2.1. Strebel differential

Given Σg a compact Riemann surface, a (meromorphic) quadratic differential on Σg is
the local data of q = f(z)(dz)2, where (f is a meromorphic function) which transform
under change of chart as:

z = z(w), q = f(z)(dz)2 = g(w)(dw)2 ⇒ f(z(w))

(
dz

dw

)2

= g(w) . (1)

Given a quadratic differential q, a parametric curve γ is a horizontal (veritcal) leaf if:

f(γ(t))

(
dγ(t)

dt

)2

> (<)0 .

Example 1. Let q = (dz)2 then the horizontal and vertical leaves are (ref. figure 1a):

α(t) = t+ ic, β(t) = c+ it, t ∈ R .

If a quadratic differential q = f(z)(dz)2 is holomorphic and non-zero at z = z0, then on
a neighbourhood of z0 we can introduce a canonical coordinate w(z) =

∫ z

z0

√
f(z)dz. It

follows from eq. 1 that in w-coordinate the quadratic differential is given q = (dw)2.
Therefore, the leaves of q near z0 look exactly as in example 1 (hence the name).
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An important consequence of the definition of horizontal leaf is that the quantity
∫ √

q
calculated on a segment of γ horizontal is always real (positive up to a choice of branch)
and can thus be used to define lengths.
While for a generic point p ∈ Σg there is a unique horizontal and vertical leaf passing
through it intersecting at right angle, the foliation behaves differently around zeroes and
poles of q:

• Let q = zm(dz)2, then both horizontal and vertical trajectories (αk and βk respec-
tively) are given by (m+ 2) half rays departing from z = 0 (ref. figure 1b):

αk(t) = t · exp 2πik

m+ 2
βk(t) = t · exp πi(2k + 1)

m+ 2
.

• The foliation becomes quite wild at singularities of q. However, the situation is

milder around a quadratic pole with a negative real coefficient. Let q = −
(
dz
z

)2
,

then the horizontal leaves are given by concentric circles around the origin (and
in particular are compact curves), while the vertical ones are half-rays (ref. figure
1c):

αr(t) = reit βθ(t) = teiθ .

(a) (b) (c)

Figure 1: Frome the left to the right: foliations defined by (dz)2, z3(dz)2, −
(
dz
z

)2
Thus, the set of horizontal (vertical) lines gives a foliation of the surface minus the poles
Σg \ {z1, . . . , zn}1.
Our interest in this mathematical device is given by the following important theorem by
Strebel:

Theorem 1. Given a Riemann surface Σg with n marked points {z1, . . . , zn} (i.e. an
element of Mg,n and an ordered n-tuple of positive real numbers (p1, . . . , pn) ∈ Rn

+, there
is a unique quadratic differential q (called Strebel differential) such that:

1Although the choice of notation is unfortunate, with zi we indicate points in the set Σg and not their
(chart dependent) coordinates
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Figure 2: The horizontal curves for a four-punctured sphere. Each domain is conformally
a disk. The critical graph is easily seen.

• q is holomorphic on Σg \ {z1, . . . , zn}

• q has double poles on each zj

• Every compact horizontal leaf α is a simple loop circling around one of the poles,
say zj, and it satisfies

pj =

∮
α

√
q ,

where the branch of the square root is chosen so that the integral has a positive
value with respect to the positive orientation of α that is determined by the complex
structure of Σg.

Remark. Around every marked point zj there is a foliated disk of compact horizontal
leaves with length equal to the prescribed value pj . As the loop becomes larger in size
(but not in length, because it is a constant), it hits zeroes of q and the shape becomes
a polygon and we have a relation between the residue and the length of the edges γi

2:

2At first glance there seems to be an ambiguity of signs, all quantities involved being positive by
definition and in general |

∫
∪γi

f | ̸=
∑

|
∫
γi
f |. However, the integrand is real (by definition of

horizontal leaf) and of constant sign since by choosing a small enough path we can avoid zeros. This
property remains valid even when the path is extended to the edge of the polygon (precisely because
we continue to encounter no zeros, vertices of the polygon itself)
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pj = L(α) = L(γ1) + · · ·+ L(γm).

The theorem gives us a way to associate to each point of Mg,n ×Rn
+ a ribbon graph (i.e.

fatgraph with an assigned length for every edge, we will denote the space of such graphs
as Γmet) given by the noncompact horizontal leaves together with their lengths (i.e. the
critical graph). However, the relationship is actually invertible! Let’s see how we can
cunstruct a surface from a given graph in Γmet

3:

• Given an edge E of length L we assign the strip of infinite length and width L.

UE = {z ∈ C|0 < ℜ(z) < L} .

The strip has a complex structure defined by the coordinate z, and a holomorphic
quadratic differential (dz)2 on it. Every horizontal leaf of the foliation defined by
this quadratic differential is a horizontal line of length L.

• Given a vertex V of degree m. Let us place the vertex V at the origin of the
w-plane. For every edge Ej coming out of V , we glue a neighbourhood of the
boundary point zj = 0 of each of the strips UEj

together on the w-plane by:

w = z
2/m
j · exp 2πi(j − 1)

m
⇒ (dzj)

2 =
m2

4
wm−2(dw)2 := q . (2)

It is important to note that the quadratic differential (2) is independent of j and
thus is well defined in a neighbourhood UV of zj = 0. Note also that q has a zero
of degree m− 2 at w = 0 and, at least locally on UV , the horizontal leaves of the
foliation defined by q coincide with the image of the edges Ej via (2).

• For every boundary component B (formed by edges E1, . . . , Eh of length Li) we
glue together the upper halves of UEj

with (aB :=
∑h

i=0 Li):

u = exp

[
2πi

aB

(
j−1∑
i=0

Li + zj

)]
⇒ (dzj)

2 = −
(
aB
2π

du

u

)2

:= q . (3)

As before, the differential is independent of j and thus well-defined on UB: it has
a pole of order 2 at u = 0 with a negative real coefficient. The horizontal leaves of
the foliation defined by q are concentric circles that are centered at u = 0, which
correspond to the horizontal lines on UEj

through (3). Note that the length of a
compact horizontal leaf around u = 0 is always aB.

3There are many details missing: UE stripes depend on the orientation of the sides, UV ’s depend on
the cyclic orientation of vertices (inherent in the definition of ribbon graphs), these observations
propagate over into the construction of UB , ...
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2.2. AdS3/CFT2

We will now present a brief review of some aspects of recent developments in the explicit
derivation of a AdS3/CFT2 duality: the aim is to (hopefully) show in practice an exciting
and recent application of the Strebel differential in physics. In particular, we will explain
how this duality is realised at the level of correlation functions (the study of the spectrum,
although interesting, is beyond the scope of this project).〈

O(w1)
h1

(x1) . . .O(wn)
hn

(xn)
〉
Sd

∣∣∣
g
=

∫
Mg,n

dµ
〈
Vw1
h1

(x1; z1) . . .Vwn
hn

(xn; zn)
〉
Σg,n

.

2.2.1. Simmetryc orbifold

The field theory side is given by a symmetric product orbifold (T4)⊗K/SK . The orbifold
theory can be described by the same field of the original theory but obeying twisted
boundary conditions4[8] (and, by definition, points related by the group action are iden-
tified):

X
(
e2πiz

)
= (g ·X)(z) = (h ·X)

(
e2πiz

)
=
(
hgh−1 · (h ·X)

)
(z) .

It is evident now that, the Hilbert space is divided into subspaces labelled by the con-
jugacy classes of G (labelled [g]).
A useful way to deal with the twisting is to introduce twist fields, defined by the mon-
odromy of other fields around them 5:

X
(
e2πiz + ζ

)
σg(ζ) = (g ·X)(z + ζ)σg(ζ) .

Well defined (gauge invariant) operators can thus be obtained by summing over the orbit
of the group. Thus for the twist fields, they are given by:

σ[g](z) ≡ N[g]

∑
h∈G

σhgh−1(z) N[g] =
1√

| Stab([g])||G|
=

1√
(N − w)!N !w

(the normalization factor ensures a properly σ[g](z) normalized two-point function, as-
suming that σg(z) has one).
In our specific case, conjugacy classes are labelled by the lengths of the cycles in the
decomposition of an element. We will consider only single cycle classes w := [(1, . . . , w)]:
multi-cycles can be obtained by multiplication of non intersecting single cycles. More-
over, in this case |G| = N ! and |Stab([g])| = (N − w)!w (the first factor counts the
permutation of the index not involved in g, the inactive colours, while the second counts
the cyclic permutation of the active ones).

4We only deal with the bosonic case. The fermionic case is similar, but switching to the covering,

the lifted fields differ from the original ones by a factor ∂Γ
1
2 ∼ t

w−1
2 . Because of this, they may

not be well defined, but have monodromy around the preimage of an insertion point of a twist field
ψt(t) → (−1)w−1ψt(t)

5Actually, the twist fields have themselves monodromy around each other. This can be derived to act
as a conjugation by the element g := g2g1 (when g2 runs around g1)
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Note that for z2 ∼ z2, σg1(z1)σg2(z2) and σg1g2(z1) implement the same boundary condi-
tions on fields. In other words, states in the conjugacy classes of g1 and g2 fuse to states
in the conjugacy class of g1g2

6:

[g1]× [g2] =
∑
[g3]

N[g1][g2][g−1
3 ] [g3] , N[g1][g2][g3] = |{(g1, g2, g3) | g1g2g3 = 1} / ∼| ,

where the equivalence is related to an overall relabelling of the elements (conjugacy):
(g1, g2, g3) ∼ (gg1g

−1, gg2g
−1, gg3g

−1).
We are interested in correlation functions between gauge invariant quantities: they are
defined in terms of gauge dependent fields

〈
σ[g1] (z1) . . . σ[gm] (zm)

〉
=

m∏
j=1

N[gj ]

∑
h1,...,hm∈G

〈
σh1g1h

−1
1

(z1) . . . σhmgmh−1
m

(zm)
〉

(4)

and, by taking successive OPEs, we see that these are only non-vanishing if g1g2 · · · = 1.
As will become apparent, it is useful to introduce a genus for the individual terms in
the sum of (4) by defining g := 1 − n + 1/2

∑
(wj − 1) (where wj are the lengths of

the involved cycles and n is the number of active colours). Fixed the genus, there are
multiple factors that give the same contributions: for each equivalence class, there are
|Stab((1, . . . , wi))| = (N − wj)!wj trivial choices that do not influence gj,

(
N
n

)
ways to

choose the active colours and n! ways to relabel them (equivalent elements obtained by
a global gauge give the same contribution). Now, each genus g contributes as N1−g−m

2 =

N− 1
2
χ(g,m) (applying Stirling’s formula).

2.2.2. Diagrams

In order to use the Strebel differential, we would like to have some diagrams. Here’s
a prescription[3]: for each active colour we draw a “fatgraph” loop, writing the corre-
sponding index inside the inner circle. The two sides of the fatgraph are inequivalent
the inner circle is drawn with a solid line and the outer circle with a dashed line. We
will refer to the solid line as the “color line”. We mark the external (dashed) line of
each fatgraph with the labels of the twist fields that contain the corresponding colour.
Finally, we glue the non-colour loops together at the positions of the twist fields, in such
a way that the order of the loops at each vertex (circling the vertex counter clockwise)
corresponds to the cycle structure of the corresponding twist field.
A term is said to be reducible if the group elements gi can be split into two sets so that
the elements in each set act trivially by conjugation on the elements of the other set7. A
reducible term factorizes into irreducible components. If a term is reducible, all the terms
in the same class are reducible, so we may speak of reducible and irreducible classes.

6And this fusion rule is compatible with the mondromy of twist fields because g′1g
′
2 = g2g1

7Another way to state this condition is to say that the group elements gj of an irreducible term
generate a transitive subgroup of SN
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It is clear that our procedure associates irreducible classes to connected diagrams, and
reducible classes to disconnected diagrams. The usual combinatorial arguments apply:
the generating functional of all diagrams is the exponential of the generating functional
of irreducible diagrams.
An w-cycle twist field corresponds to a vertex with 2w fatgraph propagators emanating
from it: w solid (“colour”) and w dashed oriented lines, in alternating order.

Remark. The genus of each diagram is easily computed: for s-point function involving
n active colours we have v = s, f = 2n, e =

∑s
j=1wj,

g =
1

2
(e− v − f + 2) =

1

2

s∑
j=1

(wj − 1)− n+ 1 .

This justifies the definition of the genus given earlier.

Remark. There seems to be a strong similarity between these diagrams and the one
arising from a gauge theory. However, while in both cases the correlator organizes itself
as sums of contributions of different fatgraphs weighted by the genus, here the basic
vertex is quartic, associated to a twist-two field, and not cubic (and there are many
other subtle constraints, further discussed in [3]). These differences disappear when
passing to the skeleton graph where homotopically equivalent edges are fused together
and the graph becomes metric.

Let us summarize what we have found. The fundamental correlators one has to compute
are classified by equivalence classes of tuples (g1, . . . , gm) satisfying:

• Conjugacy cass: each gj is a syngle cycle of length wj

• Connectedness: ⟨g1, . . . , gm⟩ ⊂ Sn is a transitive subgroup

• Nontriviality (fusion rules): g1g2 · · · = 1

• (g1, g2, g3) ∼ (gg1g
−1, gg2g

−1, gg3g
−1)

One theorem by Hurwitz asserts that this data characterises precisely the possible in-
equivalent covering maps of the Riemann sphere by a genus g surface with ramification
indices wj at the respective insertion points.
This suggests that this expansion can be identified with the string worldsheet genus
expansion under the AdS/CFT correspondence, with the identification g2string ∼ 1/N
and the worldsheet being identified with the covering map itself.

2.2.3. Covering map

This map is the one that unwind the twists: take n copy of the base space at the insertion
point of σj merge wj of them in accordance with the data of the permutation (i.e. such
that if we assign indexes to the copies, if we turn around the insertion point starting in
the sheet i we end up in σj(i). We claim is there a way to assign one of the original n
fields Xj(z), mixed by these twists, so that on the overlay there is a single, well-defined
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field X(t). Finally, in order to have the same physics, we need to define the action of
the new theory as S = SCFT |patch.
The partition function has to be rescaled by a factor due to conformal anomaly: the
metric on Σ is given by the pullback of the metric on the z-plane (that can be chosen

to be the flat one except at infinity): ds2 =
∣∣dΓ
dt

∣∣2 dt dt.
If we fix a fiduciary metric on Σ (e.g. for Σ = CP1 we can use the same as the z plane)
the partition function is the same of the fiducial one up to the Louville term

SL =
c

96π

∫
d2t
√

−g(ŝ)
[
∂µϕ∂νϕg

(ŝ)µν + 2R(ŝ)ϕ
]
,

where c is the central charge of the seed theory and ϕ = log ∂Γ + log ∂Γ.
As we have seen before, a theorem by Hurwitz tells us that the number of covering maps
is the same as the number of diagrams. Let’s present an explicit correspondence. Given
a covering map, we draw a closed loop without self-crossings on the base sphere, touching
the positions of the twist fields and enclosing infinity. The closed loop divides the base
sphere into two regions: after choosing an orientation for the loop, by convention the
“colour” region is to the left of the loop and the “non-colour” region to the right. The
inverse image of this loop on the covering space defines the diagram. For future purposes,
it is important to note that preimages of infinity can be now interpreted as the centre
of the coloured faces.

2.2.4. Correspondence

What we have shown so far is pretty suggestive but actually finding the covering map
is not an easy task. Let’s look at the g = 0 case. The covering map takes the form of a
rational function of degree N8:

Γ(z) = xi + aΓi (z − zi)
wi + · · · for z ∼ zi , Γ(z) =

pN(z)

qN(z)
=

pN(z)∏N
a=1 (z − λa)

where both pN(z) and qN(z) are polynomials of degree N . We have chosen the latter,
without loss of generality, to be a monic polynomial with N distinct zeroes corresponding
to the poles λa of Γ(z) (we have chosen infinity to be a general point, xi ̸= ∞).
We now observe that the poles and zeros of ∂Γ(z) are fix occur at z = zi with order
(wi−1). On the other hand, the only poles appear at z = λa, and they are all double poles
with residue zero (because there’s no logarithmic term in Γ). This residue constraint (is
not an additional constraint, but just an observation) leads us to a series of scattering
equations:

n−1∑
i=1

wi − 1

λa − zi
=

N∑
b ̸=a

2

λa − λb

. (5)

8Achtung: from now on, we are only interested on the covering space, thus we chose z to be its
coordinate (hopefully not causing too much confusion)
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In theory, one could solve this system for the zeroes λa
9, but it is still a difficult task.

However, the equation (5) looks a lot like the stationary equation of a Penner-like matrix
model (i.e. with potential W (z) =

∑n−1
i=1 αi log(z − zi) with αi := (wi − 1)/N ).

We can thus use standard matrix model techniques (reviewed in Appendix A). A partic-
ular useful one is the spectral curve which, rewritten in term of our problem, becomes:

y(z) =
1

N
∂ log ∂Γ .

2.2.5. Spectral curve and covering map

While actually solving the problem we need a strong change of prospective: in the matrix
model, the zj are given ab initio (defining the potential) and we solve for the spectral
curve finding the eigenvalue density (including its support) in terms of the input data
(αi, zi, νi).
In our context it is natural, instead, to specify the 2(n − 3) independent periods of
the spectral curve (over both the A- and B-cycles). This comes from the relationship
between the spectral curve and the (skeleton graph of the) diagram of the covering map:
after gluing together homotopically equivalent edges we are left with:

• the number of edges between pairs of vertices (i, j) in the original double-line
diagram ( nij = nji). These integers are constrained by their sum around a fixed
vertex i to be 2wi. In a generic graph (3 edges from each vertex) there are (3n−6)
edges so 2n− 6 independent nij

• in the original double-line diagram we had one pole λa for each of the N coloured
faces, but in the skeleton graph only (2n−4) (generically triangular) faces remain.
This implies that, at large N , most of the N poles are associated with the two-
edged faces formed from homotopic Wick contraction. These poles coalesce in the
large N limit into a system of cuts C, which are transverse to the original edges,
and are now seen to build up the edges of the dual skeleton graph (approximately
nij for the cut transverse to the segment (ij)).

We can tie everything together in a nice way: starting from the spectral curve10, we
identify the cut system C with the dual skeleton graph GD. The discontinuity of y0(z)
across a cut counts the fraction of λa poles associated to this cut, and thus:

1

4πi

∮
Al

y0(z)dz ≡ νl =
n(l)

2N
,

1

4πi

∮
Bl

y0(z)dz ≡ µl =
ñ(l)

2N
.

We can then use these period integrals to determine the (n−3) independent parameters
of R̃n−3(z) together with the (n− 3) cross ratios of the zi.

9Actually, there are only (N−1) independent equations because the sum of all of them is zero. However,
we could still determined (N − 1) λa in term of λN . One is then left with three undetermined
parameters: λN , MΓ and the constant of integration in going from ∂Γ(z) to Γ(z). These are fixed,
for instance, by requiring that Γ(zi) = xi (for i = 1, 2, n)

10The converse is immediate: the lengths of the graph, when interpreted as filling fraction, completely
determines the spectral curve
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2.2.6. Spectral curve and Strebel differential

Another striking fact is that, if we keep the 1/N term in equation 13 and we express it
in term of the original covering map we obtain the Schwarzian derivative of Γ:

y2(z)− 2

N
y′(z) =

1

N2

[(
Γ′′

Γ′

)2

− 2
Γ′′′

Γ′ + 2

(
Γ′′

Γ′

)2
]
− 2

N2
S[Γ] .

This is actually more important than it appears: the transformation property of this
derivative, implies that the spectral curve is a quadratic differential11:

S[Γ(f(z))] = f ′(z)2S[Γ(z)] ⇒ 4π2ϕS(z)dz
2 ≡ −y20(z)dz

2 = − α2
n∏n−1

i=1 (z − zi)
2

2n−4∏
k=1

(z − ak) .

Most importantly, it has poles at zi with residue αn which are real, and also real lengths
between the zeroes (they are, following the previous discussion, the periods around the
branch cuts of the original spectral curve). Finally, the Strebel graph is nothing other
than GD. Now, the sum over all the branched covers defining the symmetric product
correlator goes over, in the large twist limit, to an integral over the moduli space of the
n-punctured sphere, where Strebel’s theorem guarantees that we cover the moduli space
exactly once.

Example 2. Let’s actually compute the covering map of the simplest four-point func-
tion, i.e. wi = 2 ∀i: ⟨σ2(0)σ2(1)σ2(u)σ2(∞)⟩ (we also fix the preimages to be in
0, 1, x,∞). The number of preimages of a generic point is thusN =

∑
(wi−1)/2+1 = 3,

and thus there is another pole at l. The scattering system is now one single equation
that can easily be solved:

1

ℓ
+

1

ℓ− 1
+

1

ℓ− x
= 0 ⇒ ℓ =

1

3

(
1 + x±

√
1− x+ x2

)
, x =

l(3l − 2)

2l − 1
.

And the map is found by integrating (with the boundary conditions Γ(0) = 0, Γ(1) = 1):

Γ(t) =
t2(2ℓt− 3ℓ− t+ 2)

t− ℓ
.

Example 3. We now compute all relevant quantities for the simplest case: the large-N
three-point function. We can fix all three of the points by SL(2,C) invariance, as well
as their images. The potential of the matrix model, and the resolvent are given:

W (p)′ =
α0

p
+

α1

p− 1
⇝ G(p) =

1

2

∮
C

dz

2πi

α0

z
+ α1

z−1

p− z

√
(p− a)(p− b)

(z − a)(z − b)
.

11Another reason is that it presents the wanted invariance under post-composition with an element of
SL(2;C)
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There is only one cut, whose extremes are found imposing the constraints (11) (the
integrals reduce to sum of residues). They can be seen to be solutions of a specific
polynomial:

δℓs =
1

2

∮
C

dz

2πi

(
α0

z
+

α1

z − 1

)
zℓ√

(z − a)(z − b)
, ℓ = 0, 1 ,

z2 − z

(
1 +

α2
o − α2

1

(2− α0 − α1)2

)
+

α2
0

(2− α0 − α1)2

We can thus explicitly compute the resolvent, which in turn gives us the density of the
poles and the spectral curve:

y(p) = −(2− α0 + α1)

√
(p− a)(p− b)

p(p− 1)
= 2πiρ(p)

Where the last equality is true only on the support of C. It is easy to see that its square
is a well-defined quadratic differential with the right poles and residues!

2.2.7. String on AdS3

In the following we will give a (very) brief review of the other side of the correspondence
(for a much more for a more detailed discussion please refer to [5]).
Treating AdS3 as the coset space SL(2,C)/SU(2) and choosing the parameterisation:

h =

(
e−ϕ + γγ̄eϕ eϕγ

eϕγ̄ eϕ

)
In other words, ϕ is the radial coordinate and γ and γ are the
coordinates of the boundary sphere. The boundary of AdS3 is located at ϕ → ∞
The Nambu-Goto action becomes:

SAdS3 =
k

4π

∫
d2z

√
g
(
4∂ϕ∂̄ϕ+ β∂̄γ + β̄∂γ̄ − e−2Φββ̄

)
Moreover, in order to guarantee conformal invariance, one should also add a WZW term
of factor k. From this, one can find the classical solutions being parametrized by three
holomorphic (ρ(z), b(z) and a(z)) and three anti-holomorphic counterparts.

Φ(z, z̄) = ρ(z) + ρ̄(z̄) + log(1 + b(z)b̄(z̄))

γ(z, z̄) = a(z) +
e−2ρ(z)b̄(z̄)

1 + b(z)b̄(z̄)

γ̄(z, z̄) = ā(z̄) +
e−2ρ̄(z̄)b(z)

1 + b(z)b̄(z̄)

Taking now the limit:

13



b(z) = b0 + ϵc(z), ρ(z) = −1

2
log ϵ+ σ(z) ϵ → 0

We find:

Φ(z, z̄) = − log ϵ+ log
(
1 + b0b̄0

)
+ σ(z) + σ̄(z̄)

β(z) = e2σ(z)∂c(z)

γ(z) = a(z)

This solution reflects the fact that ϕ has an infinite additive constant (− log ϵ) which
essentially places the worldsheet at the boundary.
On the other hand, by studying the Ward identities for the correlation functions of
vertex operators one find:〈

n∏
i=1

V wi
hi

(xi; zi)

〉
=
∑
Γ

n∏
i=1

(
aΓi
)−hi

n∏
i=4

δ (xi − Γ (zi))WΓ (z4, . . . , zn)

They exactly match our hope: they localize (thanks to the δs) where the covering map
previously discussed exists with the interpretation that the vertex operators are inserted
in the preimages of the points where the twist operators are situated. This geometric
argument can be made even more specific: it can be showed that the same correlators
lead to the identifications:

γ(z) = Γ(z)

∂Φ(z) = −∂2Γ(z)

2∂Γ(z)
⇒ Φ = −1

2
log(∂Γ)− 1

2
log(∂̄Γ̄) + constant

3. Limiting Strebel differential

Although the theorems are very fascinating, actually computing the Strebel differential
for a given data (zi, pi) is a complicated task, mainly due to the transcendentality of the
reality condition (which involves elliptic integrals).

ℑ
∫ zj

zi

√
ϕ(z)dz = 0

For this project, we focused on a few particularly tractable cases.

3.1. The easiest 4-point function

To begin with, we analysed the simplest non-trivial case: the sphere with four punctures,
in the limiting cases where one or two of the Strebel lengths are much larger than the
others.

14



Figure 3: Critical graph in the limiting cases where one of the Strebel lengths are much
larger than the others

Motivations The physical reasons behind this choice can be found in the work of
Gopakumar ([6] and earlier). In these papers the differential was used in the context
of the duality between N = 4 SYM and strings on AdS5. In this case, the operators
involved in the correlation functions are of the trace type TrΦJ12. These correlation
function can be computed through the fatgraph introduced by ’t Hooft.
In this framework, Gopakumar realised in [9] that by writing the propagator in the
Schwinger representation,

1

p2 +m2
=

∫ ∞

0

dτ exp
{
−τ
(
p2 +m2

)}
(6)

the correlation function can be rewritten in terms of only quantity related to the skeleton
graph (assuming the Schwinger parameters behave as resistors):

1

τ effr

=
mr∑

µr=1

1

τrµr

⇝ G{Ji}
g (k1, . . . kn) =

∑
skel.
graphs

∫ ∞

0

∏
r dτrf

{Ji}(τ)

∆skel(τ)
d
2

e−Pskel(τ,k) .

The Strebel differential is obtained after the identification l = 1/τ 13.
Now having one (or two) length(s) bigger than the others means that the corresponding
τ is small or equivalently (looking at (6)) we are selecting p ∼ 1/τ 2 big: the UV limit!
From this, for example, we can get the OPE of trace operator.

12These are the simplest gauge invariant operators that can be created with the three complex scalars
(in the adjoint representation) of the theory. They have many interesting features (e.g. they are
primary half BPS) and play a fundamental role in the integrability of the theory (they can be
mapped to particular states of a su(2, 2|4) spin chain, then resolved via for example the BA)

13This dictionary is more problematic than the one seen in the previous sections. For example, it does
not seem to preserve all symmetries, breaking the special conformal one. The way to restore the
space time symmetries is, indeed, to avoid direct coupling between the space time variables and the
length parameters of the metric graphs
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Computation The general quadratic differential for a four-point function is of the form:

ϕ(z)dz2 = −
( a

2π

)2 ∏4
i=1(z − zi)

(z − 1)2(z2 − t2)2
dz2

where we used the SL(2,C) (reparameterization) invariance to place the punctures at
(1,±t,∞). The numerator is fixed to be a polynomial of degree four because of the
requirement of a double pole at ∞.
We now want to obtain zi = zi(t, pi) and a = a(t, pi) (actually the residue at ∞ we
immediately see a = p∞).
Let start with the first case: one of the Strebel lengths is very large compared to the
others, or equivalently (after an overall rescaling 14), when all but one length is scaling
to zero, with the relative ratios of these finite in the limit.
Before starting, we ponder on the geometrical picture: the requirements on the lengths
are achieved by the configuration where all the zeroes converge to a single point. If we
fix the finite length to be l1∞ then the two punctures ±t are enclosed by “small circles”
so it makes sense to make the following ansatz:

|t| → 0, zi(t) = |t|αi z̃i(t)

with z̃i(t) → z̃i finite, in the limit |t| → 0. Now the differential becomes:

ϕ(z)dz2 = −
( a

2π

)2 ∏4
i=1(z − |t|αi z̃i)

(z − 1)2(z2 − t2)2
dz2

However, it is important to emphasise that at this point there is no definitive proof that
the condition |t| → 0 is necessary, as the reasoning on lengths is done with the Strebel
measure, and thus not clearly translatable into constraints on Euclidean distances (or
similarly on the t coordinate). However, if we arrive to a consistent solution, the ansatz
is justified a posteriori due to the uniqueness of the Strebel differential.
In fact, we will prove that a consistent solution is given by αi = 1 ∀i. The proof follows
a few steps:

• Looking at the residue at z = 1 and requiring it to be finite we get αi ≥ 0.

• Next, we looked at the region z ∼ 0 where two poles and possibly some zeroes are
converging. In order to so, we make the change of variable w = |t|/z (and defined
wi = 1/z̃i):

ϕ(w)dw2 = −
( a

2π

)2 |t|∑4
i=1 αi −2

e4iθ

∏4
i=1(w − |t|1−αiwi)

w2(w − |t|)2(w2 − e−2iθ)2
dw2

This, in fact, ensure that the interesting punctures have now a fix coordinate ±eiθ

(while the other punctures will converge to 0).

14It is important to note that such a rescaling doesn’t affect the topology of the critical graph, conse-
quently it doesn’t change anything in the Mg,n part of the moduli space
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The residue p± are now easily seen to scale as p2± ∼ |t|
∑4

i=0 min(αi,1) −2. Requiring
that they go to zero we get:

4∑
i=0

min(αi, 1) − 2 ≥ 0
αi≥min(αi,1)
========⇒

4∑
i=0

αi ≥ 2 (7)

• From the formulas shown so far, there would appear to be a symmetry between
the four zeros. We would then be tempted to do a further ansatz αi = α ∀i,
but this would seem to lead to the same scaling for the lengths of all segments,
contradicting the initial hypothesis (one finite, the others infinitesimal).

However, the length l1∞ is, by definition, forced to be calculated along a curve
passing in between the poles at 1 and ∞: this part of the segment gives a finite
contribution.

This becomes obvious after the change of variables w = |t|1−αw̃ (believing in
ansatz, we just showed that is a coherent belief). In fact, the differential becomes:

ϕ(w)dw2 = −
( a

2π

)2 |t|6α−4

e4iθ

∏4
i=1(w̃ − wi)

w̃2(w̃ − |t|α)2(w̃2 − |t|2(α−1)e−2iθ)2
dw̃2 (8)

Now the zeroes are in fixed position and it can always be chosen a path which
avoids the punctures. The integrand is now regular apart from a scaling factor of
lij ∼ |t|3α−2−min(α−2,0) apart from the one forced to path between the singularities
at w̃ = 0, |t|α (in this case, condition (7) becomes α > 1/2).

Requiring that lengths and periods scale in the same way (since all these Strebel lengths
are supposed to go uniformly to zero) fixes α = 1 .
As we were saying at the begining, having found a consistent solution, we have now a
posteriori confirmation of the validity of the various assumptions.
Let’s consider the second case. Requiring that the length of the segment separating
w = ±e−2iθ also stay finite in the limit |t| → 0 doesn’t change much of the reasoning:
between each pair of zeros there is always a segment of infinitesimal length and therefore
the ansatz |t| → 0 is still reasonable; the length argument also holds, with an observation
on l± similar to what was said for l1∞

15.
The first difference is that now the residue p± must be finite:

4α− 2 = 0 ⇒ α =
1

2

We observe that the lengths (not affected by topological constraints) scale like l ∼
|t|3α−2−min(−1,0) = |t| 12 , and we therefore have a consistent solution.

15In fact, plugging the value of α we’ll later find into (8), it can be seen that the poles at ±t both go
to ∞ and, in the same way as before, in order to calculate the length l± it must be chosen a path
through them
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Figure 4: Dual of the Square graph

3.2. Box and Whales

Another case of interest is when (at the complete opposite of before) two opposite
segments has infinitesimal lengths. More specifically, we are interested in the case where
the sides of finite length are arranged in a square.
In this case, the physical motivation is provided by the hexagonisation programme. With
this idea of integrability, it is possible to calculate finite coupling correlation functions
by dressing diagrams with particular form factors. The diagram corresponding to the
differential we are going to study is of particular interest in that the long sides of the
square correspond in operators with a high number of Wick contractions between them.
For this reason, the correlation function factorizes as the product of two (identical)
contributions from the regions outlined by the square, making the application of the
hexagon programme particularly easy.

3.2.1. Exact solution

Unfortunately, the techniques used above are not applicable in this case because the
four zeros can no longer be connected to each other by a path of infinitesimal length
or similarly no longer collapse to a single point but to two. Moreover, while before we
were trying to find only the limiting behaviour, now we look for an exact solution (and
then, try to perturbate it). Here, the simplicity camas from the fact that the quadratic
differential in this case is actually the square of a usual one: the imaginary condition no
longer has any ambiguity of branch cuts and the integral is no longer elliptic.
We are looking for a quadratic differential of the type:

−
(p∞
2π

)2((z − z1)(z − z2)

(z − 1)(z2 − t2)

)2

(dz)2 = − 1

4π2

(
p+/p∞
z − t

+
p−/p∞
z + t

− p1/p∞
z − 1

)2

(dz)2
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where we have fixed the lengths li (and thus the residue pi, subject to the constraint
p+ + p− = p1 + p∞ ) and we are looking for solutions for zi, t. It is important to note
that, due to this constraint, the relation between lengths and periods is not one-to-one
(the residue have one less degree of freedom) and thus the additional degree of freedom
of the lengths in the graph side of the picture will manifest itself in a degree of freedom
in the moduli space (the graph is non generic, we are thus moving on a lower dimensional
cell).

Remark. Rescaling the lengths by p∞ has no effect on the topology of the graph nor on
the moduli space of the surface. From now on p∞ = 1.

Calculating the residue, we obtain a system of three equation

p+ =
(t− z1)(t− z2)

2t(t− 1)
p− =

(t+ z1)(t+ z2)

2t(t+ 1)
− p1 =

(1− z1)(1− z2)

1− t2

where in reality the third one is a consistency check for the constraint on the residue.
Taking the sum and difference of the first to equation, and defining A, B as follows
gives:

A := p+ + p−, B := p+ − p−, A− tB = z1 + z2, tA−B =
t2 + z1z2

t

namely z1,2 are the solutions of the following polynomial z2−(A−tB)z+t(t(A−1)−B):

2z1,2 = (A− tB)±
√
(A− tB)2 − 4t(t(A− 1)−B) (9)

Now we are left with the reality condition. An important observation that will render
the computation easier is that the differential can be rewritten as:

ϕ(z)(dz)2 = − 1

4π2
(d logF (z))2 F (z) := (z − 1)−p1(z − t)p+(z + t)p−

The reality condition now becomes:

ℑ
∫ z2

z1

i

2π
d logF (z) = 0 ⇒ ℜ [logF (z)]z2Z1

= 0 ⇒ F (z1)F (z1) = F (z2)F (z2)

while the horizontal leaves are characterized by:(
dz

dt

)2

> 0 ⇒ ℜ [logF (z)] = 0 ⇒ F (z)F (z) = C

The Strebel condition now has a nice interpretation: the C parameter for both zeros
has to be equal, and this is required if we want a leaf to go from one zero to another.
Otherwise, either the leaves emanating from a zero will not be compact (will not end)
or they will end on the same zero and the critical graph will be disconnected. Both of
these cases contradict the Strebel conditions.
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(a) (b)

Figure 5: Square and Strebel diagrams satisfying p+ + p− = p1 + p∞

Remark. The differential found, can give rise to a critical graph dual to both the Square
and the Whale. A careful analysis is needed in order to distinguish between the two
cases. For the analysis is better to work with the cross ratio η = (t+1)/2t. In this way,
the reality condition can be seen to single out a curve composed of a segment of the
real axis, to the ends of which two bubbles are connected. We claim that the solution
corresponding to the Square is the real η solution.

-0.5 0.0 0.5 1.0 1.5

-0.4

-0.2

0.0

0.2

0.4

(a)

-0.5 0.0 0.5 1.0 1.5

-0.4

-0.2

0.0

0.2

0.4

(b)

Figure 6: The curve on the complex η plane for which the Strebel condition is satisfied
for different fixed residue: on the left p−t = pt = 70 and on the right p−t = 40,
pt = 70. The small circle is just an artifact due to branch cut ambiguities.

Note that at a generic point of the η plane (where the Strebel condition is not satisfied)
the horizontal leaves begin and end on the same zero, and can have only three topolog-
ically distinct shapes (but only two of them can be merged to graphs that are dual to
the ones satisfying the specific residue condition). We can call the two shapes shape I
and shape II (they can be easily distinguished by looking at the dual graph).
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Now, the real line is the boundary between two different ways to get shape I, analogous
to the fact that from the square you can only reach one class of disconnected graphs.
The complex solution, on the other hand, is the boundary between shape I and II as the
Whale graph can be split in two topologically different ways16.

(a) (b)

Figure 7: On the left we draw the critical graph of the Square diagram for a typical real
solution. On the right we have the critical curves when slightly moving η to
the complex plane.

(a) (b) (c)

Figure 8: On the left we draw the critical graph of the Whale diagram when the Strebel
condition is satisfied. Then, we slightly move η away from this condition: in
the middle we are in the region I, on the right we are in region II.

One important point is the intersection between the real line and the complex shapes:
it represents the limiting case in which one of the segments has length 0. In both cases,
fixing the residue limits our freedom in the choice of segment to cut (for example, if we
are in the square case and p1 > pt we cannot cut l1t without violating the inequality) and

16We theorized a way to rigorously classify the different topologies reachable. It involves splitting each
line of the original graph into two and then divide into two groups the boundary component of the
new graph in all the allowed way (they will be the two new disconnected graph, after reconstructing
the vertex): if two segments originating from the same one end up in the same group, the final graph
is obtained by gluing them together
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we arrive at the Π diagram. This is also consistent with the fact that for this diagram
there is a biunivocal relationship between lengths and residues: the reality condition is
no longer necessary and the periods alone fix the modulus η as the solution of a second
degree polynomial [10].
Ather interesting points are the degenerate cross ratio: η ∈ {0, 1,∞}. From the plots
6b, 6a we are led to claim that η = 0, 1 are always inside the bubbles while η = ∞ is
always in region I. This behaviour is made clear by looking at how disconnected graphs
arise from the Square: here you can split the insertion points in two groups in only one
way, namely {{pη, p∞} {p0, p1}} and now, the only way to keep the graph disconnected
while moving to a degenerate point is to take the limit η → ∞ (the only puncture related
to the same zero).

Example 4. The simplest case is given by all residues equal: equation (9) and the
reality conditions respectively turn out to be

z1,2 = 1±
√
1− t2 t ∈ R, |t| > 1

It can be seen that in this the only solution is the real η segment. In fact, this degenerate
case for the Whale diagram: since we have p1 = l1, p∞ = l∞ but p(−)t = l+ + l− + l1(∞),
having all periods equal implies having two null lengths l+ = l− = 0.
If we now fix the only degree of freedom on the lengths side, we obtain the equation:

2πl = ℑ [logF (z)]z2z1 = 4Arg(
√
1− t2 + 1) ⇒ tg(

π

2
l) = |

√
1− t2|

With l ∈ [0, 1] (due to the rescaling) and |t| > 1. We indeed have a biunivocal relation-
ship between the allowed ranges of the two parameters!

3.2.2. Perturbation around the exact solution

Starting from the Square solution, we want to perturb it in order to reach the physically
relevant case of a four-point function with two opposite infinitesimal lengths. Following
[7] we start by separating one of the double zeroes into two single ones, ϵ apart from
each other.

ϕ(z)(dz)2 = −
(p∞
2π

)2 (z − z1)(z − z1 + ϵ)(z − z2)
2

(z − 1)2(z2 − t2)2
(dz)2

Expanding in orders od ϵ the residues equations become:

p+ =
(t− z1)(t− z2)

2t(t− 1)
+

ϵ

2

(t− z2)

2t(t− 1)
− ϵ2

8

(t− z2)

2t(t− 1)(t− z1)
+O(ϵ3)

p− =
(t+ z1)(t+ z2)

2t(t+ 1)
− ϵ

2

(t+ z2)

2t(t+ 1)
− ϵ2

8

(t+ z2)

2t(t+ 1)(t+ z1)
+O(ϵ3)

−p1 =
(1− z1)(1− z2)

1− t2
+

ϵ

2

(1− z2)

1− t2
− ϵ2

8

(1− z2)

(1− t2)(1− z1)
+O(ϵ3)

(10)
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Let the (rescaled) length of the small edge of the perturbed diagram be l:

2l = p+ + p− − p1 − 1
(10)
==⇒ l = −ϵ2

8

z1 − z2
(t2 − z21)(z1 − 1)

Not surprisingly, the edge is non-zero only at the second order in the perturbation; the
fact that the point we expand about has a two-fold degenerate zero implies that the
first contribution to the additional edge vanish (just try to expand the equation for l:∫ z1−ϵ

z1

√
ϕ). The geometric meaning of this equation is clear: it is, a part from a prefactor,

the residue of the two-fold zero in the Square diagram.
For any value of t and l we have two possible ways to split the zeros of the differential
corresponding to Square diagram and obtain the dashed square, the difference will be in
the position of the extra edge (we can choose between two diagonals of the box). Fixing
the specific diagram, we want to compute uniquely fixes the branch of the square root.
Going back to the system (10) and proceeding in the same way of the exact case we
obtain

A− tB = z1 + z2 −
ϵ

2
+

ϵ2

8

(
z1 − z2
t2 − z21

)
tA−B =

t2 + z1z2 − ϵ
2
z2 +

ϵ2

8

(
m−t2

t2−z21

)
t

2z1 = A− tB + ϵ+ ϵ2 ±
√

(A− tB)2 − 4t(t(A− 1)−B)

The first order perturbation can be understood geometrically: it means that the average
position of the perturbed zeroes coincides with the position of the exact double one.

4. Conclusions

In this report, we introduced the Strebel differential. We presented one application to
physics and we computed it in specific cases.
In future, it would be very interesting to delve into other aspects of AdS3/CFT2 duality:

• Moving away from the k = 1 case. It is observed in [11] that a perturbative
approach may be viable: this consists in the insertion of k twist-two fields in the
correlation function.

We have begun to analyse how these new operators modify the differential. We first
observe that in order to have N ∈ N we need k ∈ 2N. In this case (N → N +k/2),
being z̃i their insertion points, the potential get modified in the following way:

W ′(λ) =

(
1− k

2N

) n∑
i=1

α
(0)
i

λ− zi
+

1

N

k∑
i=1

1

λ− z̃i

This results in a displacement of the extremes of the cuts of the spectral curve
xj = x

(0)
j + 1

N
x
(1)
j which can be derived by perturbing equation (12):
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0 =
1

2t

∮
C

dz

2πi

zℓ∏2s
j=1

(
z − x

(0)
j

) 1
2

(
−k

2

n∑
i=1

α
(0)
i

λ− zi
+

k∑
i=1

1

λ− z̃i
+

2s∑
j=1

x
(1)
j

z − x
(0)
j

)

We would like to know how these changes affect the lengths of the critical graph.

• Although in the general discussion we have spoken of surfaces of any genus, the
identification with the matrix model, the spectral curve and the Strebel differential
as well as all the examples given are actually related to the g = 0 case. It is not
entirely clear (to us) whether the discussion is directly extendable to higher genus
or whether special precautions are required, and it would be nice to shed some
light on this.

For example, now the covering map is expressed in term of theta one forms (they
are the equivalent of monomes x− a for higher g)

Γ = c

∏N
i=1 θ(z;Qi)∏N
i=1 θ(z;Pi)

N∑
i=1

µ(Qi) =
N∑
i=1

µ(Pi)

with new constraints due to Abel-Jacobi theorem that save the discussion of the
digrees of freedom. The scattering equations

n∑
i=1

αi
θ′(Pa; zi)

θ(Pa; zi)
=

2

N

∑
b̸=a

θ′(Pa;Pb)

θ(Pa;Pb)

can no longer be seen to derive from a matrix model, because the characteristic
Fadeev-Popov term is absent but it is not clear if this conceptual difference renders
unusable the rest of the machinery.

• The final aim is to derive a duality between AdS5 and N = 4 SYM (and relate it
to the Hexagonisation project). An initial attempt was made in [12] but it was still
limited to AdS3 ⊂AdS5 subspaces. One could try to move (slightly) away from
AdS3.
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A. Appendix A: Matrix models and spectral curve

Matrix models are the simplest quantum gauge theory [13]: they are theories in 0 dimen-
sions, with basic field a (Hermitian) N ×N matrix and gauge symmetry U(N) (acting
by conjugation). Namely, the action is sum of trace terms:

1

gs
W (M) =

1

2gs
TrM2 +

1

gs

∑
p≥3

gp
p
TrMp M → UMU †

Fatgraphs Since we are dealing with a quantum theory of a field in the adjoint rep-
resentation we can reexpress the perturbative expansions of the partition function in
terms of fatgraphs, by using the double line notation due to ’t Hooft.
An important result is that the contributions of the various fatgraph can be organized
by the genus of the surface obtained by closing the holes of the graph 2−2g = V +h−E:
each hole give a contribution of N , each of the Vp vertices of degree p gives gp/gs, each
propagator gives gs. In total (t = gsN):

gE−V
s Nh

∏
p

gVp
p = g2g−2+h

s Nh
∏
p

gVp
p = g2g−2

s th
∏
p

gVp
p

Quantisation, saddle point and spectral curves As any gauge theory, the matrix
model can be quantised using the Fadeev-Popov method. In particular, a useful choice
of gauge fixing UMU † = D = diad(λ1, . . . , λN). Let F (M) = 0 be the gauge fixing
condition and U = eA (with A anti-Hermitian), then:

Fij

(
UD
)
=
(
UDU †)

ij
= Aij (λi − λj)+· · · ⇒ ∆2(M) = det

δF
(
UM

)
δA

∣∣∣
F=0

=
∏
i<j

(λi−λj)
2

After this reduction to eigenvalues, the partition function can be rewritten as:

Z =
1

N !

∫ N∏
i=1

dλi

2π
eN

2Seff(λ) Seff(λ) = − 1

tN

N∑
i=1

W (λi) +
2

N2

∑
i<j

log |λi − λj|

We can now regard N2 as a sort of h−1 in such a way that, as N → ∞, the integral will
be dominated by a saddle-point configuration that extremizes the effective action.

1

2t
W ′ (λi) =

1

N

∑
j ̸=i

1

λi − λj

(11)

In the large N limit, it is reasonable to expect that this the eigenvalues condensate along
some curves C =

⋃s
i=1 Ci. It is thus useful to introduce the density function:
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ρ(λ) =
1

N

N∑
i=1

δ (λ− λi)

In order to solve for ρ is useful to introduce the resolvent:

G(p) =

∫
dλ

ρ(λ)

p− λ
⇒ ρ(λ) = − 1

2πi
(G(λ+ iϵ)−G(λ− iϵ))

Now we are left with a Riemann-Hilbert problem for G(p) which has the following
solution:

G(p+ iϵ) +G(p− iϵ) = −1

t
W ′(p) ⇒ G(p) =

1

2t

∮
C

dz

2πi

W ′(z)

p− z

(
2s∏
k=1

p− xk

z − xk

) 1
2

where the xi are the extremes of the cuts Ci = [x2i, x2i−1] and can be found by requiring
the right behaviour at infinity for the resolvent:

G(p) ∼ 1

p
(p → ∞) ⇒ δℓs =

1

2t

∮
C

dz

2πi

zℓW ′(z)∏2s
k=1 (z − xk)

1
2

, ℓ = 0, 1, · · · , s (12)

Another important object one can introduce is the spectral curve: y(p) := W ′(p)−2G(p).
In term of this quantity, the problem discussed in the main text can be rewritten as17:

y2(p)− 2

N
y′(p) = (W ′(p))

2 − 2

N
W ′′(p)− 4R(p) R(p) =

1

N

N∑
a=1

W ′ (λa)−W ′(p)

(λa − p)
(13)

Taking the large N limit of the Penner-like matrix model (y → y0, W
′ → W̃n−2/S,

R → R0 = R̃n−3, with S being another polynomial caused by rationalisation and the
subscript signaling the degree of the numerator):

y20(p) =
W̃ 2

n−2(p)−
∏n−1

i=1 (p− zi) R̃n−3(p)∏n−1
i=1 (p− zi)

2 ≡ Q2n−4(p)∏n−1
i=1 (p− zi)

2

Now ŷ2 = Q2n−4 define a genus (n − 3) surface on which y0(z)dz is a well-defined
meromorphic differential (with poles at zi and residue αi). Now we are left with finding
the (n − 3) unknown coefficient of R̃n−3 and that can be done by specifying the same
number of independent filling fractions.

17After some uninspiring algebra
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