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Abstract

The extraction of the information embedded inside Gravitational Waves (GW) depends on
our ability to make precise theoretical predictions. One option is to consider the bound 2-body
problem and see expansions in the velocity in the non relativistic limit. A more recent approach is
to consider instead relativistic scattering, from which we can obtain quantities as power series in
the coupling G, and then relate these to the bound motion invariants via the boundary-to-bound
(B2B) map. This map, to all orders in velocity, between gauge invariant quantities, illustrates how
physical information is encoded in the scattering data and how to translate it into observables for
bound states.
We introduce the basics of the B2B map and how tidal effects can be included in the EFT approach.
We then discuss our progress in the search for partial resummation identities for the scattering
angle and obtain in the no-recoil limit (that is the test particle limit) new compact expressions for
the tidal corrections to all orders in the velocity.
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Introduction

The detection of gravitational waves (GW) provides us with a brand new source of information,
which can be extracted via an interplay of numerical and analytical tools. When studying a binary
inspiralling motion, the majority of the cycles occur where the perturbative approximation of the
Einstein’s equation is valid. Thus we can use, for example, the Post-Newtonian (PN) expansion in
velocity to reconstruct the signal and allow to reduce the problem to a computation of Feynman
diagram in the corresponding EFT. The PN expansion is truncated at order in velocities depending
to the power of G appearing in each contribution. This happens because for bound states the virial
theorem relates GM/r ∼ v2, so that only terms scaling as Glv2(n−l) (with l ≤ n) are needed at nPN.
We see now that the usual field theoretical expansion in powers of the coupling G (here the Post-
Minkowskian PM expansion) requires the inclusion of special relativistic effects to all orders. This
can be obtained in principle by resumming all velocity correction of the non-relativistic EFT, but is
ultimately unnecessary in the framework that we are going to present (for a more detailed discussion
[7]).
Our approach will be to consider the study of relativistic scattering, in which the PM framework is
natural. This problem is unrelated only in appearance to the bound motion. Indeed we will show
that it is possible to build a Boundary-to-Bound (B2B) map, to relate the computed quantities to the
bound motion’s dynamical invariants of interest.
In the next section we will introduce the basics of the B2B map and discuss the no-recoil limit and
the inclusion of tidal effects. Then we will explore partial resummation for the scattering angle, and
obtain new compact all-loop results for tidal contributions in the no-recoil limit.

B2B correspondence

2.1 Review of basic relations

The scope of this section is introducing a dictionary between gravitational observables for scattering
processes (measured at the boundary) and adiabatic invariants of bound orbits (in the bulk), to all
PM orders. For example, an advantage of this map is that it allows to bypass the Hamiltonian in
the computations, relating directly gauge invariant quantities. We follow [5], [6] and [2], so for more
details we refer you to these articles. Here and in the next sections we will refer to the following
quantities in the 2-body problem for m1 and m2: the total mass M = m1 + m2, the reduced mass
µ = m1m2/M , the symmetric mass ratio ν = m1m2/M

2, E the energy of the system, J the conserved
angular momentum, j ≡ J/(GMµ), p∞ ≡ p(r → ∞) and E ≡ (E −M)/ν.
In classical GR we are interested in computing observables (for example the scattering angle χ(J,E))
from the Hamiltonian for the 2-body problem H(r,p2) =

√
p2 +m2

1 +
√
p2 +m2

2 + V (r,p2) (which
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allows us to solve for p2(r,H = E)):

χ(J,E) = −π + 2J

∫ ∞

rmin

dr

r2
√
p2(r, E)− J2/r2

. (2.1)

In a Post-Minkowskian (PM) expansion, for impact parameter b ≫ GM we can compute χ as a series

in GM/b, with χ
(n)
j = pn∞χ

(n)
b and p̂∞ = p(r → ∞)/µ:

1

2
χ(b, E) =

∑
n

χ
(n)
b (E)

(
GM

b

)n

=
∑
n

χ
(n)
b (E)

1

jn
. (2.2)

We can also proceed with the inverse problem, determining p2 (and hence the Hamiltonian) from the
scattering angle. The Firsov formula (in which p̄ = p/p∞):

p̄2(r, E) = exp

(
2

π

∫ ∞

r|p̄(r,E)|

χb(b̃, E)db̃√
b̃2 − r2p̄2(r, E)

)
. (2.3)

By inserting the PM expansion (2.2) for χ and Taylor expanding we obtain:

p̄2(r, E) = p2∞(E)

(
1 +

∑
i

fi(E)

(
GM

r

)i)
, (2.4)

where the fn’s are connected to the χ
(n)
b ’s via:

fn =
∑

σ∈P(n)

2(2− n)Σl−1∏
l(2σ

l)! !

(∏
l

2√
π

Γ(σl

2 )

Γ(σl+1
2 )

χ
(σl)
b

)σl

. (2.5)

Here we are summing over the integers partition σ of n and σl are unique integers appearing σl times
in the partition, so that n = σlσ

l and Σl =
∑

l σ
l

These equations provide a perturbative map between χ and p̄2. Now we can for example invert
(2.5) and obtain:

χ
(n)
b =

√
π

2
Γ(

n+ 1

2
)
∑

σ∈P(n)

1

Γ(1 + n/2− Σl)

∏
l

fσl

σl

σl!
. (2.6)

Now, in principle, the knowledge of all the fi’s, allows to read off an infinite serie of PM terms χn
b ’s

for the deflection angle.

2.2 B2B relations for circular orbits

For circular orbits we can pursue a more geometrical approach: using Firsov, we can extract information
about hyperbolic motion and then analytically continue to elliptic ones. Then, for circular orbits, we
can use the condition of vanishing eccentricity to determine observables.
We observe that the point of closest approach rmin satisfies:

r2
(
1 +

∑
fi(E)

(
GM

r

)i)
= b2 . (2.7)

It is possible to transform the boundary data of the scattering problem (hyperbolic motion) into 2 real
positive r±(E , J) (elliptic) via an analytic continuation of the impact parameter.
For the hyperbolic motion, described by r = ã(ẽ coshu− 1) (where u is the eccentric anomaly, and ã,
ẽ the orbital elements) one of the solutions r̃± of (2.7) is negative. We can find r̃−(J,E) = rmin(ib, iβ)
of (2.7) (where β ≡ cosh γ−1 is the rapidity), and r̃− = rmin, while for the other we use the map
b −→ −b : r+(b > 0) = r−(−b).
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An evident drawback of this method is the difficulty of finding the roots for a theory with many non-
null fi’s, but we can construct a generalized map via the scattering angle that takes care of this issue.
The representation of r̃− in terms of the scattering angle is known:

r̃− = b

∞∏
n=1

e
−

(GM)nχ
(n)
b

(β)Γ(n/2)

bn
√

πΓ(n+1
2

) . (2.8)

In principle we could try to resum at the exponent and then obtain r± by analytic continuation.
At this point for the circular orbits we can use the condition r− = r+ (vanishing eccentricity):

−2

∞∑
n=0

(
1√
π

(
GM

z

)2n+1 Γ
(
2n+1

2

)
Γ(n+ 1)χ2n+1

b

)
= iπ + 2πiN , (2.9)

where z is b promoted to a complex. We can solve for b, and then find j(E) as a function of the fi’s
bypassing the computation of the radial action. Now let us call a fn theory a theory which has only
the first n coefficient fi’s non-null. For f1 and f2 one can directly solve (2.8), so this last described
approach seems useless. For f3 is still possible to find the general roots, but for higher theories it is
much more cumbersome than this resummation scheme.

2.3 Example resummations for f1 and f2 theories

Our objective is to obtain example resummation identities in the framework described in the previous
sections. In the f1 theory, by summing in (2.6), we find:

χn
b (f1) =

(−1)n

2n+ 1

(
f1
2

)2n+1

=⇒ χ[f1] = 2
∑
n

(−1)n

2n+ 1

(
f1
2

)2n+1(
GM

b

)n

= 2arctan(y/2) , (2.10)

where y = GMf1/b. If we resum in the r̃− exponent we obtain:

r̃− = besinh
−1(−GMf1

2b ) , (2.11)

so that:

˜r−(b, β) = r̃−(ib, iβ) = −GMf1
2

+ sgn(b)

√
(GMf1)2

4
− b2 = r−(b > 0, β) . (2.12)

Of course this procedure can be repeated analogously also for more general theories. Let us see as an
example the condition (2.9) for the f2 theory. Starting from (2.6), we can find two separate sequences
for odd and even χn

b :

χ2n
b [f1,2] =

√
πfn

2 Γ(n+ 1/2)

2Γ(n+ 1)
n = 1, 2... (2.13)

χ2n+1
b [f1,2] =

1

2
f1f

n
2 2F1

(
1

2
,−n;

3

2
;
f2
1

4f2

)
n = 0, 1... (2.14)

By performing the sum we get the total scattering angle:

χ[f1,2] + π

2
=

1√
1−F2y2

(
π

2
+ arctan

(
y

2
√
1−F2y2

))
, (2.15)

where F2 ≡ f2/f
2
1 . We can perform the sum inside (2.9), which becomes:

sinh−1

√
(GMf1)2

4(z2 − (GM)2f2)
= i

π

2
+ iπN . (2.16)

As a consistence check, this is precisely equivalent to the condition of degenerate roots for (2.8).
Again for this theory we can attempt a resummation of the r̃− exponent obtaining:

r−(b, β) = ib

∞∏
n=1

e
−

(GM)nχ
(n)
b

(iβ)Γ(n/2)

(ib)n
√

πΓ((n+1)/2) . (2.17)
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2.4 No recoil approximation and inclusion of tidal effects

Now we consider the no recoil approximation, which allows for easier partial resummation, that is to
leading order in the symmetric mass ratio ν. Indeed we will see in the next section that the simplifying
power of this limit allows us to find new compact expressions for the tidal corrections to the scattering
angle to all orders in the velocity.
The no recoil limit coincides with the test particle limit ν → 0. Thus if we assume m1 ≫ m2, we have
m2 → µ, m1 → M , E = M(1 +O(ν)), and we can ignore self force effects.
In this approximation p2 is a known function of r and E, computed on a Schwarzschild background.
The no recoil approximation successfully reproduces the 2PM order exactly (see [9]), but fails at 3PM
due to presence of unaccounted self force effects. Nonetheless some terms at higher PM contribute to
the ν independent part of the no recoil quantities.

Now we want to understand how in the above limit we can introduce tidal effects (see [3]). We
start from the non tidal case of a test particle m (not extended). The on-shell condition:

gµνp
µpν −m2 = 0 , (2.18)

where:

gµνdx
µdxν =

(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2(dθ2 + sin θ2dφ2) , (2.19)

with M ≫ m, µ ∼ m, ν ≪ 1. We take the momentum of the test particle for the non-spinning case
(motion bound on the plane θ = π/2) as pµ = (mE0, pr, 0, pϕ). So now from the on-shell condition I
can find pr as a function of J = pϕ = jGMm and u = GM/r. At this point the scattering angle can
be obtained as:

χ+ π =

∫ ∞

−∞
dr

∂pr(J, u, E)
∂J

. (2.20)

By substituting for the variable y = J/(mr) we eventually find (originally obtained by Z. Liu in work
to be published):

χ =

∞∑
n=1

(−2)n

jn(γ2 − 1)n/2
Γ( 12 − n)Γ(n+ 1

2 )Γ(
n+1
2 )

√
πΓ(n+ 1)

2F̃1(−n,
n+ 1

2
, 1− n

2
, 1− γ2) , (2.21)

where 2F̃1 is the regularized Gaussian renormalized hypergeometric function. As an example of the
simplifying power of the no-recoil approximation we can perform the resummation for the fn’s using
the above result and (2.5) obtaining:

fn =
26−n(n− 2)(1 + v2)

v2
for n > 4 (2.22)

f4 =
8

v2
+

129

16
, f3 =

17

2v2
+ 9, f2 =

3
(
5v2 + 4

)
2v2

, f1 =
2
(
2v2 + 1

)
v2

. (2.23)

It would be an interesting future development understanding if there is a physical reason behind
the appearance of a general closed form only after n = 4.

Now let us consider an extended body in an external long-wavelength gravitational field. The typical
body of interests are for example neutron stars, whose tidal deformation contribution to GWs carry
the imprint of the nuclear matter equation of state and may open new paths for beyond the standard
model searches (for an example [1]). The center of mass will trace a world-line that corresponds
approximately to a geodesic motion of a test particle. Then we can try to incorporate finite size effects
in a world-line action approach (for additional details see [4]).
Often the exact effective action is unknown, but we can build it by writing all the possible local terms
respecting the symmetries of the system. The extra terms (with respect to the point particle) are
organized in power of derivatives, so that for the first corrections:

Spp =
∑
a=1,2

∫
dτa

(ma

2
gµνv

µ
av

ν
a + c

(a)
E2EµνE

µν + c
(a)
B2BµνB

µν − c
(a)

Ẽ2
ẼµναẼ

µνα − c
(a)

B̃2
B̃µναB̃

µνα
)

,

(2.24)
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where Eαβ = Rµανβu
µuν , Bαβ = R∗

µανβu
µuν , Ẽµνρ = ∇⊥

{µRναρ}βu
αuβ , B̃µνρ = ∇⊥

{µR
∗
ναρ}βu

αuβ

and R∗
µναβ = ϵµνρσR

ρσ
αβ/2, (∇⊥)µa = (gµν − uµ

au
ν
a)∇ν (u1, u2 are the velocities of the 2 bodies). Note

that for the moment we have neglected ’mixed contributions’. Of course this approach can be contin-
ued by adding higher derivative (diffeomorphism invariant) terms (for more details see [8]).

This addition to the action modifies the on-shell condition to:

gµνSchp
(a)
µ p(a)ν = m2

a − 2ma(c
(a)
E2 (E

Sch
µν ))2 + c

(a)
B2 (B

Sch
µν )2 − c

(a)

Ẽ2
(ESch

µνα)
2 − c

(a)

B̃2
(BSch

µνα)
2) , (2.25)

where all the tidal terms are computed using the Schwarzschild metric gSchµν . After some computations
it is possible to rewrite everything in terms of u, j, pr and E1 = m1E . In this way the on-shell condition
becomes an equation for pr which can be solved, order by order if needed. Once we have found pr we
can proceed with the computation of the χn’s via (2.20). We will follow this procedure in the next
chapter to find closed expressions for the tidal corrections E2, B2.



Resummation of the scattering angle

In the previous chapter we have already seen the usefulness of knowing a closed analytical form for the
scattering angle, or at least for its PM coefficients. Moreover the knowledge of resummation identities
allows for shorter numerical computation times, as in general, analytical expressions or fewer indices
sums are evaluated faster.
Guided by these principles, we now address the possibility of (partial) resummations for the scattering
angle in the f3 theory and for tidal corrections in the no recoil limit.

3.1 Resumming the f3 theory

We now address the possibility of resumming the f3 theory. By using (2.6) we can get:

χb =

∞∑
n1,n2,n3=0

(
Gm

b

)n1+2n2+3n3
√
π

2
fn1
1 fn2

2 fn3
3

Γ( 1+n1+2n2+3n3

2 )

n1!n2!n3! Γ(1 +
n3−n1

2 )
=

=

∞∑
u=−∞;n2,n3=0

√
πf−u

1 fn2
2 (f1f3)

n3Γ
(
n2 + 2n3 − u

2 + 1
2

) (
Gm
b

)2n2+4n3−u

uΓ(n2 + 1)Γ(n3 + 1)Γ
(
u
2

)
Γ(n3 − u+ 1)

,

(3.1)

where we swapped the sum over n1 for the one over u = n3−n1. This expression cannot be rearranged
in a form corresponding to a Lauricella function, so we must try to resum it index by index. Note that
due to the 1/2 factor in Γ(u/2), we must sum not only for non-negative u, but also for negative odd
values. Summation over n2 yields:

χb =

∞∑
u=−∞, n3=0

√
πf−u

1 (f1f3)
n3Γ

(
1
2 (4n3 − u+ 1)

) (
Gm
b

)4n3−u
(

b2−f2(Gm)2

b2

)−2n3+
u
2 − 1

2

uΓ(n3 + 1)Γ
(
u
2

)
Γ(n3 − u+ 1)

. (3.2)

Now we can sum over u by computing separately the contributions from non-negative and negative
terms, obtaining:

χb =

∞∑
n3=0

−

(
(Gm)

b

)4n3−1

(f1f3)
n3

4b4f1Γ(n3 + 1)2Γ(n3 + 4)

(
2
√
πb3Γ(n3 + 4)

(
1− f2(Gm)2

b2

)−2n3− 1
2

× (3.3)

×
(
πbn3 csc(2πn3)

√
1− f2(Gm)2

b2
3F̃2

1,
1− n3

2
, 1− n3

2
;
3

2
, 1− 2n3;

4
(
f2 − b2

(Gm)2

)
f2
1

+

+ f1(Gm)

(
π sec(2πn3) 2F̃1

1− n3

2
,−n3

2
;
1

2
− 2n3;

4
(
f2 − b2

(Gm)2

)
f2
3

− 2Γ

(
2n3 +

1

2

)))
+

+ f4
1 (Gm)4Γ(n3 + 1)Γ(2n3 + 2)

(
1− f2(Gm)2

b2

)−2(n3+1)

×

× 3F2

(
1,

3

2
, 2n3 + 2;

n3

2
+ 2,

n3

2
+

5

2
;− f2

1 (Gm)2

4 (b2 − f2(Gm)2)

))
.

7
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We believe this is the furthest we can get with standard techniques. More explicitly we tried to per-
form the double sum after substituting the definitions of the Hypergeometric functions or searching for
recurrence identities after the use of contiguous relations, but to no avail. This may be, conservatively,
a clue that a closed expression of named functions (if it exists at all) would not be shortly evaluated
by computers, undermining the whole goal of the effort. We also conjecture that this same difficulty
may arise not only for the complete expression but even for its coefficients in the Gm/b expansion.
Indeed, by substituting n = n1+2n2+3n3 as a sum variable we manage only to eliminate one index:

χb =

∞∑
u=−∞, n=0

√
πf−u

1 Γ
(
n+1
2

) ( (Gm)
b

)n
f

n+u
2

2 2F1

(
−n

4 − u
4 ,−

n
4 + 1

2 − u
4 ; 1− u; 4f1f3

f2
2

)
uΓ(1− u)Γ

(
u
2

)
Γ
(
1
2 (n+ u+ 2)

) , (3.4)

so even χn may only be implicitly expressed as a sum. Of course we get circularly the same conclusion
if we try to collect for Gm/b in the expression summed only over n3.

3.2 All-order results for tidal deformations

Now we want to investigate resummation identities for the tidal effects in the no recoil limit. We make
the approximation in which these corrections are small, so that we may consider only the linear order,
compute the various terms’ contributions separately and then superpose them.

Substituting the higher derivative operators’ contributions in (2.25), we note that for the corrections
E2, B2 we obtain a (bi)quadratic equation. For the other operators we get instead a proper quartic
of difficult solution, so for now we restrict our computation only to the former contributions.
Let λE = 1

G4m4
2m1

cE , λB = 1
G4m4

2m1
cB . We start by considering the E2 contribution and find two

solutions for p2r from (2.25). Only one of these solution is physical, and it is the (non-divergent) one
that gives back the known solution for the point particle in the non-tidal limit λE −→ 0 :

p2r =
m2

1

(
γ2 + (2u− 1)

(
j2u2 + 1

))
(1− 2u)2

+
12λEm

2
1u

6
(
3j4u4 + 3j2u2 + 1

)
1− 2u

. (3.5)

So the expression, from (2.20), that we must integrate in y to find χ for the tidal correction is:

1√
γ2 + 2 (y2 + 1) yϵ− y2 − 1

−
6λEy

6ϵ6
(
6γ2 + y

(
3y
(
4γ2 + 6y3ϵ− 3y2 + 10yϵ− 5

)
+ 10ϵ

)
− 5
)

(γ2 + 2 (y2 + 1) yϵ− y2 − 1)
3/2

,

(3.6)
where 1/j ≡ ϵ. The first term originates the known point particle result, while the second is responsible
for the tidal correction ∆χE , which will be our focus. At this point we can expand in 1/j ≡ ϵ the
denominator, keep only the λE-linear part and integrate order by order in ϵ:

∆χE =

∞∑
n=0

∫ √
γ2−1

y=0

dy

[
3λE2

n−6y6
(
18y5 + 30y3 + 10y

)( − 3
2

n− 7

)(
y3 + y

)n−7
ϵn
(
γ2 − y2 − 1

) 11
2 −n

+

+ 3λE2
n−5y6

(
− 3

2

n− 6

)(
y3 + y

)n−6
ϵn
(
6γ2 − 9y4 + 12γ2y2 − 15y2 − 5

) (
γ2 − y2 − 1

) 9
2−n

]
=

=

∞∑
n=0

3π(n− 5)(n− 4)(n− 3)(n− 1)j−n
(
γ2 − 1

)5−n
2 λE

64(2n− 11)Γ
(
n
2 + 2

) (γ2
(
n
(
2n3 − 71n+ 27

)
+ 72

)
− 3γ4×

× (n− 1)(n+ 1)(2n− 11)(2n− 9)− 3((n− 1)n+ 3)) 2F̃1

(
7− n,

n+ 1

2
; 6− n

2
; 1− γ2

)
+ γ2(n+ 1)×

×
(
(n− 1)

(
3γ4(n(6n− 55) + 121) + 3γ2n(11− 2n) + n

)
+ 3
)

2F̃1

(
7− n,

n+ 3

2
; 6− n

2
; 1− γ2

)
.

(3.7)

The terms of the sum above are the closed expressions for ∆χn, where ∆χ =
∑∞

n=0 ∆χn/j
n, that we
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were searching for. We proceed analogously now for the B2 correction finding:

∆χB =

∞∑
n=0

9πλB(n− 5)(n− 4)(n− 3)(n− 2)(n− 1)2j−n
(
γ2 − 1

)5−n
2

64(2n− 11)Γ
(
n
2 + 2

) (
γ2(n+ 1)

(
γ2(2n− 11) + 1

)
×

× 2F̃1

(
6− n,

n+ 3

2
; 6− n

2
; 1− γ2

)
+
(
γ2(11− 2(n− 4)n)− 1

)
2F̃1

(
6− n,

n+ 1

2
; 6− n

2
; 1− γ2

))
.

(3.8)

These formulae for the E2 and B2 corrections reproduce every known PM coefficient for the tidal
corrections to the scattering angle (computed in [4]). As a reference we report the first non-null four
tidal corrections (starting from n = 6), superposition of the E2 and B2 contributions:

∆χ
(6)
E =

1

512
(−15)π

(
− 420γ8(λB + λE) + γ6(1200λB + 1200λE − 17017)+ (3.9)

+ 3γ4(−360λB − 424λE + 5005) + γ2(240λB + 624λE − 3003) + 60λB − 132λE + 77

)

∆χ
(7)
E =

1

35 (γ2 − 1)
7/2

(
15360γ16(λB + λE)− 3072γ14(31λB + 31λE − 80)+ (3.10)

+ 1344γ12(185λB + 188λE − 832)− 224γ10(1572λB + 1665λE − 9152)+

3360γ8(86λB + 99λE − 572)− 6720γ6(20λB + 27λE − 143) + 336γ4(92λB + 172λE − 715)+

− 24γ2(80λB + 388λE − 1001)− 192λB + 480λE − 429

)

∆χ
(8)
E =

3π

32768

(
448γ10(27027λB + 27027λE) + γ8(−32598720λB − 32598720λE+ (3.11)

+ 111546435) + 140γ6(211680λB + 227808λE − 969969)− 350γ4(28224λB + 38976λE − 138567)+

+ 700γ2(1008λB + 3312λE − 7293) + 7(4032λB − 11328λE + 10725)

)

∆χ
(9)
E =

1

9009 (γ2 − 1)
9/2

(
− 18γ2(226304λB + 1022528λE − 1738165)+ (3.12)

+ 32γ4(−252γ6(881712λB + 977379λE − 2781064) + 36γ4(2788968λB + 3374553λE − 9733724)+

− 6γ2(4455360λB + 6293196λE − 17034017) + 8γ8(144γ8(5824λB + 5824λE)+

− 8γ6(760032λB + 760032λE − 654368) + 9γ4(2134080λB + 416(5163λE − 8228))+

− 9γ2(3837600λB + 3923400λE − 8557120) + 21(1843452λB + 3536(549λE − 1430)))+

+ 9(393120λB + 753480λE − 1738165))− 119808λB + 374400λE − 347633

)
.

We could attempt to resum also the last index, and investigate if there is a closed form for tidal
corrections of the whole scattering angle. Standard methods do not yield results, however we can
bring the computation in the fi’s space. This is heuristically motivated by the fact that in general fn’s
are nicer than χn’s, as we can see in the non tidal case (2.22). At this point the procedure would be
to build a matrix with columns entries the coefficients in v of the fn’s. In this way we can search for
recurrence identities in more generality than both in the PN and PM expansions, for example going
along the diagonals. We leave open this possibility for future work.
Lastly we point out that we could go beyond the linear order, up to arbitrary order in λE , as the
integrand is in general always a sum of terms with known integral. We computed the quadratic
(starting from n = 12) and cubic (from n = 18) contributions, here as an example we report the ∆χE
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at order λ2
E :

3πλ2
E(n− 11)(n− 10)(n− 9)(n− 8)(n− 7)(n− 5)(n− 3)(n− 1)

(
γ2 − 1

)10−n
2 ϵn

4096(2n− 23)(2n− 21)Γ
(
n
2 + 3

) × (3.13)

×
(
γ2(n+ 1)(81γ10(n− 7)(n− 1)(n+ 1)(2n− 23)(2n− 21)(3n− 25)(3n− 23)+

− 9γ8(n− 1)(2n− 23)(2n− 21)(3n− 23)(n(3n(10n− 69)− 404)− 839)+

+ 9γ6(n− 1)(2n− 23)(2n− 21)(n(n(n(27n− 88)− 947)− 3226)− 1386)+

− 3γ4(n− 1)(2n− 23)(2n− 21)(n(n(n(6n+ 107) + 519) + 1072) + 486)+

+ γ2(n(n(n(n(n(4n(30n− 781) + 21657) + 33341)− 597891)− 152473) + 1991229) + 14391)+

− 5(n(n(n(n(40(n− 18)n+ 1159) + 22254)− 5087)− 77604) + 1053)) 2F̃1

(
14− n,

n+ 3

2
; 11− n

2
; 1− γ2

)
+

−
(
81γ10(n− 7)(n− 1)(n+ 1)2(2n− 23)(2n− 21)(2n− 19)(3n− 23)+

− 9γ8(n− 1)(n+ 1)(2n− 23)(2n− 21)(2n− 19)(n(3n(8n− 29)− 652)− 1165)+

+ 9γ6(n− 1)(n+ 1)(2n− 23)(2n− 21)(2n− 19)(n(n(5n+ 71) + 264) + 330)+

− 3γ4(n(n(n(n(2n(2n(n(n+ 31)− 433)− 10297) + 117689) + 914716) + 1460497)− 976146)− 1570158)+

+ 5γ2(n(n(n(n(n(2n(4n(2n− 53) + 1405) + 7949)− 88327)− 135103) + 218035) + 358473) + 53001)+

− 35(n(n(n(n(40(n− 18)n+ 1159) + 22254)− 5087)− 77604) + 1053)

)
2F̃1

(
14− n,

n+ 1

2
; 11− n

2
; 1− γ2

))
.

The cubic contribution has the same form of sum of regularized gaussian Hypergeometrics, albeit
more complicated. A possibility of future development would be to compute enough of these terms to
conjecture the form of the generic order contribution. We remark however that before using any of
these (non-linear) results we should check that all contributions from the other operators are null in
the problem of interest. Indeed a rigorous approach at non-linear orders would require to consider the
effect of the tidal operators together as we do not have superposition anymore.
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[5] Gregor Kälin and Rafael A. Porto. “From Boundary Data to Bound States”. In: (2020). doi:
10.1007/JHEP01(2020)072. eprint: 1910.03008.
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