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Abstract

In the following report, eight analysis approaches for a Higgs recoil mass calculation
inete™ — Z* — ZH — H{T{~ events are presented. The analyses are performed
using conventional event loops, RDataFrames, or Uproot. Afterwards, the different
approaches are benchmarked and a representative runtime analysis of a python
RDataFrame script is presented. Overall, the c++ macro using RDataFrames
performs best in terms of runtime. In python, Uproot and RDataFrames show
similar levels of performance. Lastly, several aspects of usability for the different
approaches are discussed.
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1. Introduction

Since the Higgs boson’s discovery in 2012 [1 2], precision measurements of its properties
were brought into focus. With the yet to be build Higgs factory, the International Linear
Collider (ILC), software development on a new simulation, experiment orchestration and
analysis framework began.

In modern high energy physics (HEP) experiments, computational analysis is the key to
finding new physics, as well as doing precision measurements or probing theoretical pre-
dictions. When working with recorded or simulated data, a reliable and robust software
framework is necessary. Additionally, the framework should deliver easy-to-use and fast
tools to analyse the given data.

In the following, an example analysis calculating the Higgs recoil mass in an ete™ —
Z* — ZH — HUT{™ process, see Fig. |2 at a resonance energy of 250 GeV is presented
using eight different analysis approaches. This process can be measured with high pre-
cision and low background at the ILC. Lastly, the different approaches are benchmarked
and analysed in terms of runtime as well as optimised in terms of their performance.

2. Software Framework

Modern high energy physics has to face a number of challenges. Since the lifetime of
experiments is planned to be in the order of several decades, new technological develop-
ments could lead to a shift in priorities or lead to new paradigms. With long lifetimes
come large amounts of data that need to be preserved and stored in a format that ensures
longevity. Furthermore, as resources are limited, the usage of such should be minimised,
therefore computing efforts need to be optimised. Historically, each research facility has
their own software framework. Today, the general idea is to unify the scattered land-
scape of software frameworks and to create one ecosystem that can be used by every
future HEP experiment.

The set of software packages to do event and detector simulation as well as data analysis
and storage in high energy physics is called HEP software stack. A representative figure
showing the layered structure of the software stack can be seen in Fig. [I| (a).

The base layer, that is the most generic layer, in the HEP software stack consists of
the operating system (OS) and commonly used, non-HEP specific, libraries and tools,
such as different programming languages, compilers etc. Following the base layer, the
core HEP libraries that provide generic functionality are included. The data analysis
framework ROOT[3], or the detector simulation platform Geant/[4], B, [6] are for in-
stance part of this layer. Next is a more specific layer that combines and extends the
previous, consisting of components that are still shared by many experiments. Event
generation software like Pythia[7, 8] could for example be part of this layer. The next
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Figure 1: Main ingredients for the turnkey HEP framework Key4hep.

layer is the experiment framework layer which provides orchestration of the experiment,
e.g. through Marlin[9] or Gaudi[10]. The layer on top consists of the event data model
(EDM) for persistent, i.e. to be stored, and transient, i.e. not to be stored, data and
the interfaces to databases. The most specific layer then holds algorithms and tools that

implement the simulation and reconstruction logic to other packages making use of the
features, like Delphes[11] or FastJet[12, [13].

As all the pieces of software are intertwined with each other, the goal for Key/hep
is to connect and extend all packages towards a complete data generation and analysis
framework. It should be easy to set up, use, maintain and extend as well as fast in
runtime.

The main ingredients to this turnkey software framework are shown in Fig. |1| (b). Here,
the data processing framework, Marlin for the ILC, is the base, everything else is con-
structed on. The detector geometry information is done by DD/hep[14], [15]. The EDM
will be implemented by podio[16]. Podio is a generator for thread safe c++ code, taking
a high level description of the EDM as a YAML file as an input.

3. Theory

In this section, a description of the underlying physics process that is analysed is pre-
sented, as well as Amdahl’s law, which is observed in runtime of RDataFrame analyses,
see Sec. @l



3.1. Physics

In the following analyses, the ete™ — Z* — ZH — H{T/~ process at a centre of mass
energy of 250 GeV is analysed, a representative leading order Feynman diagram can be
seen in Fig. [2) and the Higgs recoil mass is calculated. The process can be measured
precisely at the ILC.
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Figure 2: Leading order Feynman diagram (left) and cross section plot [17] (right) with a
fixed polarisation of the electrons and positions and a fixed Higgs boson mass.

The square of the invariant mass of the object, in this case the Higgs boson H, that
recoils against the Z boson, which subsequently decays into two leptons ¢T¢~, is given
by

MI?-I = Mr2ecoil =5+ M% - 2EZ\/§7 (1)

where s is the centre of mass energy, My is the Z boson mass and E its energy. The
cross section for this process peaks at a centre of mass energy of 250 GeV, as shown
in Fig. 2l The recoil mass spectrum can be seen in Fig. Here, a clear peak at the
Higgs boson mass of My = (125.10 £ 0.14) GeV [I8] is observed. The second peak
approximately around the Z mass is due to the irreducible ZZ background.

3.2. Amdahl’s Law

In computer science, Amdahl’s law describes the theoretical speedup of the runtime
of a task that can be expected by increasing the number of threads the task uses.
It describes the fact that the overall runtime improvements gained by increasing the
number of threads and parallelising part of the task is limited by the fraction of time
the parallelised part of the task contributes to the total runtime. Amdahl’s law [19] is
given by

S(z) =

1
A-p+t @)
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Figure 3: Recoil mass spectrum of toy Monte Carlo events in the e" et — u™p~ H chan-
nel at a centre of mass energy of 250 GeV with ete™ — u*pu~jj background.

where S is the theoretical speedup of the runtime of the whole task, = is the speedup
of the part of the task that is parallelised and p is the proportion of runtime that the
parallelised part of the program originally occupied.

4. Analysis Approaches

This analysis has been carried out using eight different analysis approaches, all using
EDMd4hep, listed in Tab. [I] In the following, each approach is explained. Afterwards,
the approaches are analysed in terms of their performance. In all versions, 292,806
background and 17,143 signal events where analysed. The events were simulated using
Delphes.

All analyses can be found on GitLaH]

4.1. Python

The python analysis is carried out in three different ways, characterised by the framework
used in the analysis.

Conventional Event Loop (higgs recoil with bkg edm4hep python.py)

This approach uses the podio generated application programming interface (API) of EDM4hep.
In this example, the events are read using the EventStore function of podio, and looped over
using a conventional python loop. Within the loop, the recoil mass is calculated.

Uproot (higgs recoil with bkg edm4hep uproot(_slow, conc).py)
Uproot is a columnar analysis framework, thus the ’event loop’ consists of indexing a high

Loitlab.desy.de/ftx-sft-key4hep /edm4hep-analysis


https://gitlab.desy.de/ftx-sft-key4hep/edm4hep-analysis

dimensional array. There are three versions of the analysis using Uproot. Two versions, using
lazy, which is a lazy read in of the files and on demand executions for calculations, the other
one using concatenate, which concatenates all input files and loads them into memory. The
difference in the two lazy versions is the time at which the di-muon cut in the analysis is
applied. lazy is scheduled to be decommissioned in December 2022.

RDataFrame (higgs recoil with bkg edm4hep RDataframe(_leafs).py)

Analogous to Uproot, the RDataFrame analysis is also a columnar analysis. The input files
are read into a dataframe. Every action that is performed on the dataframe is tracked in
a computation graph. When processing the dataframe’s content further, for example when
plotting, the computation graph is executed. Currently, RDataFrames only support indexing
on leaf level content of ROOT files, thus, to index branch level objects, separate utilities
functions, written in c++, are used as a workaround. This has been reported to the ROOT
developers. Two analyses were done using RDataFrames, one indexing on leaf, the other one
indexing on branch level.

4.2. C++

To compare the c++ performance to the python performance, one conventional, using a con-
ventional event loop, and one columnar analysis is done in this programming language.

Conventional Event Loop (higgs recoil with bkg edmdhep.C)

Analogous to the corresponding python example, the files are read with podio Reader, then
the events are accessed though podio’s EventStore. Afterwards they are looped over using a
conventional c++ loop.

RDataFrame (higgs recoil with bkg edm4hep RDataFrame.cc)

The goal with the RDataFrame versions in c++ is to eliminate the just-in-time compilation
(JIT) when running the program, as compared to python. Again, analogous to the python
analysis a c++ analysis using RDataFrames is done. Here, the indexing of the data frame
is done on branch level using separate utilities functions. Analogous to the python version,
computation graphs are created when operations on the dataframe are performed.

4.3. Performance Analysis

The average runtimes of representative macros for each analysis type are shown in Tab.
Here, MTO is short hand for the code line EnableImplicitMT(0), which enables implicit mul-
tithreading, with ROOT managing the number of threads automatically.

Fig. [4] shows a runtime comparison of the python scripts using Uproot or a conventional event
loop. Shown are the mean runtime, averaged over five executions, minimum and maximum
runtime during the five executions. The analysis using Uproot concatenate, which loads the
whole data set to memory, is slowest. The applicability of Uproot concatenate depends on
the file size and hardware of the executing machine. The hardware of the machine used to
benchmark and run the analysis is shown in Tab.

The other versions shown in the figure use lazy, which provides a lazy read in of the files to



Uproot. The two versions differ by the time at which the event selection is applied. In the
late cut version, the recoil mass calculations are done before the event selection is applied. In
the early cut version, the event selection is applied first, then the recoil mass is calculated.
Although the calculation of the recoil mass is not computationally expensive, applying the
event selection before the calculation results in a speedup by a factor of about two.

The runtime of the conventional event loop using python is in between the two Uproot lazy
versions.

The dotted lines in the plot indicate the runtimes of the c++ RDataFrame (red), the conven-
tional c++ event loop (black) and the fastest python RDataFrame (magenta) macros. Here,
the conventional event loop in c++ is faster than the corresponding python one. The fastest
python RDataFrame macro, using 16 threads and indexing on leaf level, is approximately as
fast as the Uproot version using an early event cut. The overall fastest execution of the re-
coil mass analysis is provided by the c++ executable, using RDataFrames and an automatic
management of the number of threads by ROOT.
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Figure 4: Runtime comparison of python macros using Uproot concatenate and lazy, as
well as a conventional event loop.

Fig. |5 shows the runtimes of the macros using RDataFrames. Here, two python versions are
shown, one using indexing on the branch level, the other one using indexing on leaf level, in
the ROOT files, as well as a c++ version using RDataFrames with a branch level indexing.
Here, it is observed, that all the c++ macros perform better than the python versions.
Furthermore, all RDataFrame analysis approaches show the same behaviour in terms of run-
time decrease with an increase of used threads. Runtimes ’converge’ at a thread number of
approximately eight, this is due to Amdahl’s law, see Sec.

Additionally, runtimes at MT=0 are fastest in the c++ and python branch level versions. Solely
in the python leaf level indexing version the runtime of the macro using 16 threads is lower than
the one of the macro using an automatic determination for the number of threads by ROOT.
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Figure 5: Mean, minimum and maximum runtimes of the RDataFrame macros.

However, differences are small and the runtimes using MT=0 and MT=16 are not significantly
different.

When comparing the two python versions, the leaf level indexing version almost always per-
forms better than the branch level indexing versions, although differences are insignificant and
runtimes often overlap, as indicated by the 'fluctuations in runtime’ showing the minimum and
maximum runtimes during the five executions.

4.4. Runtime Analysis

In this section, a representative runtime analysis using a python RDataFrame macro is pre-
sented. Implementing

verbosity =

ROOT.Experimental.RLogScopedVerbosity (ROOT.Detail.RDF.RDFLogChannel (),
ROOT.Experimental.ELogLevel.kInfo)

in the macro yields a console output that displays the times each analysis step needs. Runtimes
for each individual process, the total runtime and a description of the process are shown in
Tab. Bl

Here, it is observed that the just-in-time compilation time that is needed for building the com-
putation graph for the first time, i.e. for the signal files, contributes significantly to the overall
runtime. Information is stored in the cache, such that building the computation graph for the
second time, i.e. for the bkg. events, takes less than half of the runtime of the first build.
Furthermore, it is also observed, that executing the computation graph takes less than 10% of
the time needed to build it, when working with approximately 310,000 events.

Importing the necessary modules as well as plotting and saving an output file also takes a
significant fraction of the total runtime.



5. Summary

In this section, the most important results from the performance analysis, see Sec. and
runtime analysis, see Sec. are summarised. Furthermore, the different analysis approaches
are briefly discussed.

It is observed, that the c++ analyses are always faster than their python counterparts.
This applies to the analyses using a conventional event loop as well as to the analyses using
RDataFrames. The overall best performance in terms of runtime is achieved using RDataFrames
with ROOT automatically determining the number of threads to use, in c++.

The runtime analysis of the scripts showed, that the just-in-time compilation and import-
ing the necessary modules to the python analyses contribute significantly to their runtime.
This can be avoided using a pre compiled c++ version of the analyses.

Although using RDataFrames significantly speeds up the analyses, as of September 2022 it is
not possible to index on branch, rather than on leaf, level. A workaround to this problem is
to implement separate utilities functions. Indexing on leaf level is marginally faster than using
the workaround and indexing on branch level. In python, runtimes of macros using Uproot or
RDataFrames do not differ. In Uproot, no separate utilities are needed, making it a more user
friendly experience. Additionally, the podio/EDM4hep output files contain special characters
which have to be avoided in RDataFrames, thus aliases have to be introduced. Uproot can
handle these special characters.

When working with modest amounts of data, runtimes of python and c¢++ macros using a
conventional event loop do not differ significantly. The podio EventStore interfaces are used
in the conventional event loop examples. Here, a wide variety of functions, like p4 which
constructs a Lorentz vector, as well as an intuitive interface to access branches in events, for
example event.get (), are provided.

Further tests to the proposed analysis approaches can be done. Multithreading, benchmarking
and analysing the runtime of the python and c++ macros using the conventional event loop
is yet to be done. If they show a significant increase in performance, future analysis strategies
can benefit from that information. This might guide the decision making process on future
analysis approaches of particle physics collaborations.
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A. Runtimes

‘ Langauage ‘ Technique/Framework ‘ Avg. Runtime ‘ Min. Runtime ‘ Max. Runtime ‘
Python Conventional event loop 22.17s 21.72s 22.60's
Uproot (lazy, early cut) 12.74s 12.23s 14.12s
Uproot (lazy, late cut) 25.10s 24.93s 25.36's
Uproot (concatenate) 77.83s 76.06 s 79.31s
RDataFrame (branch level) MTO 13.02s 12.76s 13.31s
RDataFrame (leaf level) MT16 12.47s 12.43s 12.62s
C++ Conventional event loop 17.97s 17.54s 18.08s
RDataFrame MT0 7.35s 7.16s 7.69s

Table 1: Average runtime, averaged over five executions, minimum and maximum run-
times of the python and ¢4+ macros, using a conventional event loop, Uproot
or RDataFrames, with various subversions.
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’ Specification Value
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian
CPU(s): 20
Thread(s) per core: 2
Core(s) per socket: 10
Socket(s): 1
NUMA node(s): 1
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Silver 4114 CPU
@ 2.20GHz
Stepping: 4
CPU MHz: 799.890
CPU max MHz: 3000,0000
CPU min MHz: 800,0000
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024 K
L3 cache: 14080 K

Table 2: System hardware specifications on which the analyses where executed and

benchmarked.
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Process Total Description
Runtime
importing modules 2.5s importing necessary modules
to python
Run()>: Starting event loop number 0. starting to build computation
graph (CG) for signal event loop
Jit()>: Just-in-time compilation phase 6.07s | completed just-in-time compilation (JIT)
completed in 3.573096 seconds. for CG for signal event loop
RunTreeReader()>: Processing trees in reading ROOT file
files signal: entry range [0,17142], for CG for signal event loop
using slot 0 in thread 139735803369280.
Run()>: Finished event loop number 0 | 6.10s finished CG for signal
(0.03s CPU, 0.028059s elapsed). event loop
Run()>: Starting event loop number 0. starting to build CG for bkg. event loop
Jit()>: Just-in-time compilation phase 7.49s completed JIT
completed in 1.389356 seconds. for CG for bkg. event loop
RunTreeReader()>: Processing trees in reading ROOT file
files bkg: entry range [0,292805], for CG for bkg. event loop
using slot 0 in thread 139735803369280.
Run()>: Finished event loop number 0 | 7.80s finished CG for bkg.
(0.31s CPU, 0.308021s elapsed). event loop
Run()>: Starting event loop number 1. starting to execute CG for signal
Jit()>: Just-in-time compilation phase 8.05s finished JIT for execution
completed in 0.252379 seconds. of signal CG
RunTreeReader()>: Processing trees in reading in the
files signal: entry range [0,17142], signal files
using slot 0 in thread 139735803369280.
Run()>: Finished event loop number 1 8.27s finished executing the CG
(0.22s CPU, 0.215331s elapsed). for the signal files
Run()>: Starting event loop number 1. starting to execute CG for bkg.
Jit()>: Nothing to jit and execute. nothing to JIT
RunTreeReader()>: Processing trees in reading in the
files bkg: entry range [0,292805], bkg. files
using slot 0 in thread 139735803369280.
Run()>: Finished event loop number 1 | 10.77s finished executing the CG
(2.51s CPU, 2.50069s elapsed). for the bkg. files
plotting and saving the file as .pdf 13.02s stacking the histograms

creating a plot and
saving the plot as a file

Table 3: Representative runtime analysis of the python RDataFrame macro and descrip-
tion of the (most likely) process that is executed.
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