Designing nanomechanical resonators for high-frequency
gravitational wave detection

Juan P.A. Maldonado, University of Bonn, Germany

DESY Summer Student Program 2022

Supervised by: Dr. Christoph Reinhardt
Dr. Udai Singh
Dr. Axel Lindner

ALPS research group at DESY

September 7, 2022



Abstract

Fueled by recent achievements of km-scale gravitational-wave interferometers,
the development of ”smaller-scale” detectors are currently gaining momentum.
By virtue of their smaller dimensions, these detectors target gravitational-waves
at frequencies above the established observation window (i.e., 10 to 10* Hz). A
particular example is the levitated sensor detector, currently under development
at Northwestern University, which targets gravitational waves in the range of 10%
to 108 Hz. The setup comprises a nanoparticle, which is optically levitated at the
anti-node of a standing wave formed by a laser inside an optical cavity. Upon
passing of a gravitational wave the particle is displaced from its equilibrium po-
sition, which is recorded with a second laser beam. As an alternative to using a
levitated nanoparticle we consider a "partially-levitated” membrane. In order to
realize sensitivities compatible with the levitated sensor detector, a nanomechani-
cal membrane resonator with ultra-high-quality factor is required, to suppress the
impact from thermal noise. In the present project, we show, by means of simu-
lations in COMSOL Multiphysics, that tenfold increasing the lateral extent of a
state-of-the-art membrane resonator enables a hundredfold increase of its quality
factor. This provides a possible route towards realizing membrane resonators for
high-frequency (e.g., ~ 100 kHz) gravitational-wave detection. To further increase
the Q factor and suppress the impact from thermal noise, we consider cooling the
membrane with a continuous-flow cryostat. As a first step towards estimating the
corresponding helium consumption, we investigate a related analytical model.
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1. Introduction

1.1. Detecting the axion with Gravitational Waves

One of the most well-motivated dark matter candidates is the QCD-axion. First pro-
posed as an explanation of the strong CP problem [1], its discovery would represent a
major breakthrough in the understanding of the universe, as it has great impact both
in particle physics and cosmology. Experiments sensitive to this particle in different
regions of the parameter space include MADMAX [2] and IAXO [3].

If the mass of the QCD axion lies in the interval of 10722 eV < m, < 107! eV, it could af-
fect the dynamics and GW emission of rapidly rotatig astrophysical black holes thorugh
the Penrose superradiance process [1]. In this mass range, the Compton wavelength of
a bosonic dark matter particle is comparable to the size of stellar mass black holes, thus
creating a gravitational atom that can be excited due to the high angular momentum of
the rotatig black hole. This excited state can go through de-excitation by emitting GWs
with frequencies in the order of 10° Hz. At frequencies beyond 10 kHz there is a lack of
known astrophysical objects which are small and dense enough to emit GWs efficiently,
which significantly reduces the noise that is usually obtained when probing an exotic
particle by dominant processes which produce similar signals.

GW detectors like LIGO [5] have already been commissioned and succesfully detected
GWs from violent processes such as the merger of black holes [0]. Improved GW in-
terferometers like LISA [7] and the Einstein Telescope [8] are also subject of research
and are planned to start operation in the next decades. However, the sensitivity of
GW interferometers excel at low-frequency detection but is strongly supressed in the
high-frequency (2 10* Hz) mainly because of laser shot noise and the smaller signal at
shorter wavelengths.

For this reason, novel techniques for high-frequency GW detection are relevant and can
have an enormous impact in fundamental research [9]. A particular example of a high-
frequency gravitational wave detector is the levitated sensor detector [10, 11]. Here, a
dielectric nano-particle is optically-trapped at the anti-node of the laser’s standing wave
inside an optical cavity. A passing gravitational wave causes a time-varying strain of
the physical length of the cavity. This causes the nanoparticle to oscillate around its
equilibrium position, if the optical trapping frequency (widely tunable via the optical
power) agrees with the frequency of the gravitational wave. The resulting oscillation is
read out with an additional optical probe beam [12]. As an alternative approach to us-
ing a levitated nano-particle, we consider a partially-levitated membrane [13]. Here, the
mechanical restoring force, acting on the membrane up on displacement from its equi-
librium position, is a superposition of the optical restoring force and the membrane’s
elasticity. To achieve a high signal to noise ratio (SNR), a large mechanical quality
factor is required, as it suppresses the impact from thermal noise.



1.2. Ultra-coherent nano-mechanical membrane resonators

Nanomechanical resonators are chip-scale implementations of a harmonic oscillator.
They have a wide range of applications in sensing and cavity optomechanics [14].

The Q factor parametrizes how fast is the energy stored in an oscillator dissipated. Re-
ducing force noise (oc Q~'/2) or decoherence rate (o< Q') have been major drivers in cre-
ating nano-mechanical resonators with ultra-high Q. A specific class of nano-mechanical
resonators with ultra-high-Q are made out of strained thin films with high tensile stress
o ~ 1GPa [15]. Promissing ways for further improving high Q-factor membrane res-
onators include material research and geometry optimization. Regarding the former
aspect, Si3 N, was selected for this study because it has emerged as a powerful mechani-
cal resonator material, featuring some of the highest Q-factors ever achieved [16]. These
resonators show even at room temperature ~ MHz resonances with sub-Hz damping
rates (equivalent to @ ~ 10° [17]. The present work focuses on the enhancement in
the Q-factor by ncreasing the lateral extent of a thin-film membrane resonator, which is
investigated by simulating expected Q factors in COMSOL Multiphysics [15].

The mechanical quality factor @) of a membrane resonator is defined as

K
=21 X —— 1.1
Q=2 x o (1)
where K represents the energy stored in the oscillator and AK the energy lost per cycle
of oscillation. To compute this quantity in the simulated resonators, the total energy

stored is calcualted as [19]
K =27 f?ph // z(z,y)*dS, (1.2)
S

where f is the resonance frequency, p the density of the material, h its thickness, and
z the amplitude of vibration perpendicular to the membrane. The integral is evaluated
over the surface of the resonator. Note that this definition can be interpreted as the
superposition of the total energy stored for a large number of infinitesimal resonators.
Analogously, the energy lost per oscillation cycle can be defined as

2 2. 02 2 2
3 z B B 8282_ 0%z
L 1-y2 // <8x2 ) 2(1-1) [8m26y2 (&an) ]dS (1.3)

Where Y is the Young modulus, v the Poisson ratio, and ¢ the local loss angle distribu-
tion defined as

1
ﬂh
with [ represents the inverse loss angle coefficient. There are equivalent definitions that
use, for example, the complex and real components of a Young modulus instead of its

- (1.4)



norm and the local loss angle distribution. However, for the purposes of these work, the
variables here introduced were the parameters used to model a specific material in the
simulations

2. Simulations

The following simulations or some parts of it were run on a local computer ! and on

the Maxwell cluster, mainly for parallel computations between different models. The
reported computation times are given in terms of the local machine specifications.

2.1. Square membrane

A straightforward way to start is by comparing the quantities computed numerically
by COMSOL to a well-known analytical case. Specifically, a square membrane of side
L is simulated implementing Cauchy conditions on its edges. This simple model has
eigenfrequencies that can be computed analitically by means of equation 2.1 [15].

L % 2 2y, (2.1)

fm,n: ﬁ P

Where f,,, denotes the frequency mode (note that there are degenerated modes for
m = n), o is the in-plane tensile stress and p the density of the material. The numerical
values used to characterize the membrane are as follows:

e Young modulus Y = 250 GPa

o Lateral extent L = 500um

e Thickness 100 nm

e Poisson ratio v = 0.23

 Density p = 2700 kgm 3

o Stress 0 = 1GPa

o Inverse loss angle coefficient ® = 3.14 x 107°
The simulation first does a stationary step to redistribute the loads (i.e. the tensile stress)
on the membrane and finds numerically the eigenfrequencies and corresponding mode
shapes of oscillation. To do this, a mesh is created to do the finite element simulation.
Figure 1 shows the distribution of the mesh elements.

Intel core i5-8350, 16 GB RAM, 120 free GB of SSD



Figure 1: Mesh elements for the square membrane simulation.

Note that the elements decrease in size when approaching the edges of the membrane,
this is required to compute an accurate Q factor, because this region will feature high
energy loss, as seen in figure 3. The modes corresponding to the first eigenfrequencies,
computed in the second step of the simulation, are also shown in figure 2.
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Figure 2: Visualization of modes for the first four eigenfrequencies. The upper-left cor-
responding to the fundamental mode of this membrane.

The numerical values for these eigenfrequencies are displayed in Table 1, along with the
analytical solution obtained using equation 2.1.

(n,m) Analytical (kHz) Numerical (kHz) Error %
(1,1) 860.66 862.28 0.19
(1,2),(2,1) 1360.8 1363.4 0.19
(2,2) 1721.3 1724.6 0.19

Table 1: First four eigenfrequencies for a simple square membrane model

The eigenfrequencies found numerically match those calculated analytically to high pre-
cision, with a default mesh for general physics and element size set to fine.
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Figure 3: Energy loss density (log scale) due to the bending of the square membrane.
Note that approaching the edge, the loss increases by several orders of magni-
tude

It is also useful to study the energy loss density in this model, to estimate where most
of the energy loss is happening, thus determining the Q factor achievable with this
particular device. As seen in figure 3, the edges of the membrane is the predominant
area where energy is lost, due to the fixed clamping (i.e. Cauchy boundary conditions)
that holds the membrane. The effect of energy loss at the clamping edges of a fixed
membrane has been largely studied and reported [20, 21]. To attain larger Q factors,
different geometries have been proposed such that this effect can be avoided (see, e.g.
[22]). Notably, The possibility of modifying the square membrane introducing a semi-
periodic hexagonal lattice [23] has proven to be a promising alternative to achieve larger
Q factors, which could enable, among many applications, to measuring high-frequency
gravitational waves [11].

2.2. Phononic crystal

One way to address the problem of high energy loss on the clamped edges of a square
membrane is proposed by [23]. A central defect enables a set of localized modes, which
strongly suppress displacement and correspnding bending-related losses at the clamps.
The figure 4 shows the first defect mode. By virtue of its symmetry it couples to an
incident laser beam (shown in red), via the radiation pressure force. Installing such a
membrane inside an optical cavity, such as used in the ALPS-II experiment, thereby
coupling it to the intra-cavity field, might enable the detection of gravitational waves
[11]. As a first step, towards adapting the design of the phononic crystal membrane
for gravitational wave detection, we implement a corresponding COMSOL model for
resonance frequencies and quality factors, which we validate with regard to the results
presented in [23].

To study the phononic crystal behaviour, a 3D shell is simulated in COMSOL [18], by
implementing a stationary step to redistribute the loads and a subsequent eigenfrequency
step.



Figure 4: Advantageous shape of the fundamental defect mode when coupling to an
incident laser beam

2.2.1. Material properties

The material properties were chosen in accordance to [23]. Table 2 show the input
parameters of the simulation, formulated consistently to use the equations introduced
in section 1.

Name Value Comment

o 1.27 GPa In-plane stress

p 3.20 &5 Material density

Ey 270 GPa Real part of Young’s modulus
v 0.27 Poisson ratio

o] 2.93 x 10" m~! Inverse loss angle coefficient

Table 2: Material characterization for the membrane

Where E1, 5 = Ey/FE; is an alternative way to describe the Young modulus Y = F; +
1F5, which expresses the relation between the stress and the strain on the material.
o quantifies the tensile stress in the membrane. Complementary, the strain describes
the amount of deformation of a body caused by a tensile stress, relative to its natural
size. Finally, the Poisson ratio expresses the deformation on an orthogonal axis to the
direction of applied stress. For the case of the membrane, it quantifies the deformation
on the z-axis, i.e. the oscillation direction, caused by the in-plane stress. In the range of
0 < v < 0.5, an in-plane stress greater than 0 (tensile stress) will cause the compresion



of the body in the orthogonal direction.
The values here used are typical for a silicon nitride Si3/N; membrane, and match exactly
those measured and reported in [23].

2.2.2. Geometry

A thin semi-periodic phononic crystal is simulated using the parameters shown in table

3. These parameters are chosen to match those reported [23] in order to validate the
model.

Name Value Comment

a 0.160 (mm) Lattice constant

h 35 (nm) Thickness

r 0.26 X a Radius of membrane holes

v 0.27 Poisson ratio

B 2.93 x 101 m~! Inverse loss angle coefficient

Table 3: Geometry of the membrane. The value for § was taken from [2/]

Figure 5 shows the dimensions of the unit cell used for the creation of the periodic
component of the membrane array, based on the unit vectors of a hexagonal unit cell.
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Figure 5: Unit cell of the membrane before computing the difference of the rectangle and
the six circles

where a denotes the lattice constant. Then, as shown in figure 6, the geometry of the full
membrane can be created by joining multiple unit cells and creating a central defect of a
size similar to a. Finally, a central bigger circle is appended to simulate the illuminated
region by the probe laser for measuring the membrane’s oscillation of the sensing laser.
The radius was chosen to cover completely the central defect and the expected zone
around it with high oscillation amplitude.
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Figure 6: Complete membrane geometry included the scanning region of the sensing

laser around the central defect.

To reduce possible redundant vertices or edges the built-in function Remowve details
was selected. Eliminating these redundancies is a good practice to avoid not optimal
meshing, though for the case of study there was no impact.

When completing the full geometry, a total of 1736 edges and 1718 vertices are created.

2.2.3. Mesh elements

To construct the mesh, the extremely fine mesh elements of a free triangular mesh
are further varied until the size at the defect looks fine enough. To check that the
selected values are small enough, the plots obtained during the analysis step are checked,
where it is expected to see smooth behaviours in the graphs. Moreover, in section 2.3 a
complementary sanity check is explained. Figure 7 shows how the final meshing looks
like near the edge of the membrane and in the region of the defect mode. The creation
of the mesh outputs a total of 1.55 x 10° degrees of freedom. Care must be taken not to
use an overly-fine mesh as it can have a drastic impact on the memory and computation
time!, without any measurable change in the computed quantities.

2.2.4. Defect modes

The simulation computed the first 600 eigenfrequencies and its mode profiles. By scan-
ning the movement around the central defect using the central circle it is possible to

Thttps:/ /www.comsol.com /support /knowledgebase /875
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Figure 7: Mesh elements as seen for the small phononic crystal before computing the
model.

plot the integral over this surface of the orthogonal displacement. Figure 8 shows this
result for the complete range of frequencies found.
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Figure 8: Spectrum of the membrane for the first 600 eigenfrequencies. The labels A-E
correspond to the five defect modes found.

It can be seen that in the range of 1.45 < frequency < 1.7 M Hz the amount of modes
decreases abruptly. This bandgap appears as a consquence of the periodic structure



[23]. Inside this region, five defect modes are found, in agreement to the measurements
reported by the original paper. Table 4 summarizes these findings. Finally, these modes

Mode Measured (MHz) Simulated (MHz) Relative (%)

A 1.4627 1.4747 0.8
B 1.5667 1.5863 1.3
C 1.5697 1.5949 1.6
D 1.6397 1.6649 1.5
B 1.6432 1.6716 1.7

Table 4: Eigenfrequencies found in the simulation compared to those reported in [23].

can be visualized by plotting the orthogonal displacement in the surface of the membrane,
the results are shown in figure 9.

st defect mode

0':...’:=...=. O..l....:.

4t defect mode 5th defect mode

Figure 9: Orthogonal displacement of the membrane for the eigenfrequencies that cor-
respond to defect modes.

From the plots, it can be safely concluded that the modes also feature the same displace-
ment profile as the ones found in [23], thus making sure that no mode was mis-identified
during the band gap graph procedure. Another feature found on this figure is the ap-
pearence of some modes in frequencies very close to the defect mode eigenfrequencies.
These modes will play an important role on the energy loss in the membrane, and are
further explored in section 2.2.5

2.2.5. Energy loss density

The bending-related energy loss density of the membrane can also be visualized to
estimate how the regions of greatest losses have been modified in comparison to the

10



square membrane 2.1. These results are shown in figure 10.
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Figure 10: Energy loss density for the phononic crystal.

for comparing bending-related loss of different membranes,the normalized curvature
needs to be considered. Figure 11 shows the line graph of normalized curvature for
first defect mode in the phononic crystal and the square membrane.

From these plots, it is evident that the semi-periodic membrane suppresses the energy
loss at the clamping points of the membrane (the edges). However, a contribution to the
energy loss far from the defect is also evident. This contribution could arise from edge
modes sufficiently close in frequency to a defect mode. For example, note in figure 8 the
close modes (in black) at slightly lower frequencies to the defect mode A (in red). These
modes are different by less than 1%, so it is possible in principle that they marginally
contribute when the membrane is excited at the defect mode frequency. Figure 12 shows
the behaviour of these adjacent eigen-modes, which are also referred to as edge modes
[25].

11
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Figure 11: Normalized curvature for both the square membrane and the phononic crys-

tal. It can be seen that higher bending is present in the square membrane,
which causes additional energy loss.
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Figure 12: Degenerated edge modes at a close frequency from the fundamental defect
mode.

Note that the shape of these edge modes matches the energy density loss pattern seen
for the fundamental mode in figure 10. This possible explanation is supported by [25],
where the authors suggest that the frame width of the membrane could impact the
proximity of the edge modes to the defect ones. These edge modes can contribute in
the membrane when it is excited around the defect mode eigenfrequency, which would
lower the Q factor ahieved by causing additional energy loss near the edges. Therefore,

a natural continuation of the model is a systematic study of the frame width and its
impact to the Q factor.

12



2.2.6. Relevance of frame width

A parametric sweep on the frame widths is effectuated to compute the Q factor of similar
membranes with different frame widths fw (see Fig. 6). For this systematic study, only
the fundamental defect mode was investigated, both for limitations in computer power
and time, as well as because it is the most interesting one for our purposes, as due to
its symmetry, it couples well to the optical field inside a cavity. Figure 13 shows the
calculated Q factor for different frame widths in the fundamental eigen-frequency.
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1704 Linear fit
1st defect mode -
Fr. width (mm) 1664 Small membrane -
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Figure 13: Left: Q factor as a function of the first defect mode eigenfrequency. Right:
Strong direct correlation found and parametrized using a linear fit.

From this result, it can be concluded that a wider frame width would help in achieving
a larger QQ factor. Note however that it also shifts its eigenfrequency to a larger value,
so a compromise must be made if the signal of interest has a fixed frequency regime.

The similar direct correlation between (Q factor and frame width allows to conclude
that the distancing from the defect mode to its neighboring edge modes contributes to
achieving a larger Q factor. Furthermore, it is worth remarking that the order of mag-
nitude of the Q factor, regardless of the frame width chosen, is of 10%, accordance to
the measurements reported in [23].

Even though the behaviour found seems to be highly predictable by a linear trend, figure
14 shows the relation between ) factor and frame width. Here, the bump that appears
for a width of around 0.08 mm rrises the question of whether there are Q peaks in the
design of the nano-mechanical membrane. If that was the case, a systematic study of
these possible features would be suitable if trying to maximize the Q factor around a
given vibration frequency.

13
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Figure 14: Relation between the Q factor achieved by the phononic crystal and the frame
width of the membrane.

Finally, we investigate the decay of the oscillation towards the edges for the fundamental
defect mode, to understand how the band gap is supressing the transmision of energy
outside the defect. Figure 15 shows the orthogonal amplitude of oscillation at this mode
for different frame widths. In all cases, the peak of oscillations happens at the defect,

and is strongly damped towards the edges, inidicating that no significant coupling to
edge modes occurs.
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Figure 15: Orthogonal displacement through a vertical line that passes through the cen-
ter of the membrane for different frame widths. First image of the pannel
corresponds to O mm frame width and the second one to 0.01 mm.

Note that the behaviour of the oscillation profile does not feature a high dependence on
the frame width. At first glance, the curves might appear to be the same, but minor
differences can be found looking in detail especially near the edges of the membrane.
This observation is consistent with the slight change on Q factor observed when varying
the frame width, which in all cases remained in the same order of magnitude.

2.3. Scaled phononic crystal

Now, the possibility of improving the @ factor achieved by several orders of magnitude
is explored, one way to achieve this is by scaling up the physical size of the membrane.
From [23], we infer the scaling to be

L2

QO<77

(2.2)

where L is the length of the lateral extent of the membrane, and h is the thickness,
therefore, for a fixed h, a 10x bigger membrane could in theory enhance the Q factor
by a factor of 100.

This scaling is still feasible to machine and study in a research-oriented clean room,
considering a typical wafer size of 15 cm, devices with lateral extents in the order of few
cm can be made. As it is costumary, several of them could still be fit into the wafer,
accounting for possible breaking of some of them during the fabrication process without
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having too much impact on the process efficiency.

Therefore, as an extension of the previous study, a big membrane is simulated, keeping
h fixed to 35 nm as in the previous case, but increasing its lateral extent by 10 times the
original one.

Membrane geometry

The membrane used corresponds to the same geometry created for the original Phononic
crystal studied in section 2.2, it also leaves the material parameters (Poisson ratio, Young
modulus, density) unchanged. The parameter with dimensions of longitude (except for
the thickness), such as the frame width and the size of the unit cell in terms of the
radius of the honeycomb circles a, are rescaled to 10X its previous values. Therefore,
it effectively reproduces a membrane of the same material, 10 times bigger in the x-y
plane, and with a higher ratio between surface area and thickness.

Mesh elements

The mesh elements are defined as in table 5. The highlighted parameter "Maximum”
needs to be sufficiently small so that a smaller element would not impact the Q factor
calculation significantly. For the ”small” membrane case, a 60% reduction on this
parameter around this number had an impact on the Q factor computation of less than
1%. The elements with dimensions of longitude also correspond to 10 times the values
used for the small membrane.

Max (-107°m) Min (-107°m) Curvature Res. narrow regions Max growth rate
51.4 1.4 0.2 1 Default

Table 5: Parameters of the customized free triangular mesh

The big membrane model was also run in the Maxwell cluster. The time taken to build
the mesh was around 12 minutes in the local computer and 9 minutes on Maxwell. In
total, the mesh consists of 5.14 x 10° boundary elements and 4.7 x 10* edge elements,
which lead to a total of 6.4 x 10° degrees of freedom.

2.3.1. Eigenmodes

The model is solved in two setps: First, a membrane of frame width of 0.6 mm is solved
by finding the first 600 eigenfrequencies where the defect eigenmodes are for the scaled
membrane. Similarly to the analytical square membrane modes, it is found that the
eigenfrequencies scale with f oc L=!, with L the lateral size of the membrane. Then, a
parametric sweep for different frame widths is computed for 40 eigenmodes around the
value of the fundamental defect frequency found in the first step. The second model,
which includes the parametric sweep, was solved in Maxwell, needing a total of around
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Figure 16: Relation between the fundamental defect mode frequency and the frame
width of the membrane. Note that the spacing of the sweep is proportionally
smaller than the used in the small membrane

9 hours for 11 different frame widths.

Figure 16 shows the relation between the frequency of the defect mode for different frame
widths.

2.3.2. Enhancement in Q

The oscillation modes and energy loss density for the big membrane look like those
obtained for the small one. However, they key feature is the scaling on the Q factor by
o 100. This was an expected result inferred from [23] here confirmed for several frame
widths in numerical simulations. Figure 17 shows the obtained results. It can be seen
that regardless of the frame width chosen, the order of magnitude of the Q factor has
increased with respect to figure 13.

Moreover, as previously discussed in section 2.2, the parametric sweep on the small
membrane suggested the possibility of Q peaks. For the big membrane study, a finer
sweep across multiple values around the deviation from the trend shown in figure 16
around fw = 64mm was computed. Figure 17 shows the raw data where an evident
peak sits at around the mentioned frame width. Here, a linear fit was effectuated to
account for the correlation previously displayed in figure 13 between the frame width
and the Q factor. The linear trend adjusted to the linear regime shown in the figure

reads
Q = 0.663[mm '] - fw + Qo, (2.3)

with
Qo = 1.6519 x 100

and fw the frame width measured in mm. This trend is subtracted from the data points,
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Figure 17: Obtained Q factors for different frame widths in the big membrane

leading to the () peak shown in figure 17b that can be fit with a lorentzian curve of the

form
2A w

T (fu— fw? +
The obtained fitting parameters (with R = 0.998) are reported in table 6. This result

Q (2.4)

Parameter Value Description
fw, (639.23 £ 0.03) pm  central value
w 0.0040 £ 0.0001 FWHM

A (7.654+0.16) x 105 Area

Table 6: Parameters used in the Lorentzian fit shown in figure 17b

strongly supports the hypothesis that Q peaks can be found and exploited by fine-tuning
the frame width of the membrane resonator. Moreover, the behaviour of the Q peaks
was determined with high accuracy, modelled by a Lorentzian distrubution. For the case
studied, an optimal choice of fw could enhance the membrane @ factor an additional

10%.

3. Cryogenic studies
An implementation of nano-mechanical membranes for high frequency gravitational wave
detection also requires the cooling of the membranes inside a low temperature cryostat

or cryocooler, which reduces the thermal coupling of the device to the environment.

These systems use liquid helium (which was first time liquefied by Kamerlingh Onnes
in 1908) to achieve ultra-low temperatures (below 20 K). But due to the scarce avail-
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ability of helium in the world, its consumption of it has to be limited and one needs
to understand the helium transport inside the cryostat and calculate the amount of he-
lium needed for the operation of the experiment. One of the cooling options, is to use
a continous flow liquid helium thermostat [20]. section 3.1 investigates the theoretical
background to simulate such a device, which could potentially be used for high energy
physics applications.

3.1. Theoretical model

A (helium) cryostat contains a fixed volume varying amounts of liquid and gaseous
helium. Therefore, the mass flow rates can be described as

dmy,  dmy,  dmpe

dt —  dt  dt
dmg _ dmpon  dmg,,, (3.1)
dt  dt dt

where G and L correspond to the gaseous and liquid components of helium inside of the
cryostat, boil refers to the boiling liquid helium that is thus converted to gas, out referes
to the gaseous helium that exits the cryostat through the outlet, and in refers to the
incoming liquid helium through the inlet.
The internal energy of the helium system can be also decomposed in the liquid and
helium parts,

Eiotal = mpur, + magug (3.2)

where u refers to the internal energy. Given that these quantities are not fixed in time,
it is more useful to express this conservation law as a function of time:

L de dUL duG

detotal dm
=
dt L™t

An alternative way to express the total energy is through its legendre transformation

between volume and pressure,
H=e+pV (3.4)

where H is the enthalpy of the system, and p, V' the thermodynamic variables of pressure
and volume. Deriving both sides with respect to time,

de _dH _d(pV)
dt — dt dt
d (mLhL) + d (m(;h(;) d(pV)

dt dt dt

Where h represents the internal enthalpy. Replacing the blue terms with equations 3.1
and using the product rule for the derivatives the expression becomes

dQ
dt’

de dmyg,
% g gy
da "t ¢

dmg,,., N dmpen

dt dt (ha = o) +

(3.5)
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with

dQ dhi, dhg d (pV)

o = mLin Gout

dt dt dt dt
is identified as the heat flow inside the cryostat. given that both equations 3.3 and 3.5
are equal to the rate of change in the total energy, the terms can be matched, arriving
to

(3.6)

u I g dme y, due ) duG
Vae T T ar T (3.7)
dmLin B deout + dmboﬂ (h . h ) + @ .
dt dt da VG T gy

By using the chain rule, it is possible to identify the term in red as

duy, dug\ dP  dP
<de—P + mGd—P> E = Q2 di (38)

in accordance to [20]. Substituting equation 3.1 into equation 3.7, some terms vanish.
The remaining terms read

o3P _dQ  dmy,

dmg
in h _ out _ h
2 T ar ) g (e —he) (3.9)
dmypoi '
+ dlt) ! (h —ug — (hL — uL))
and the term in blue can again be identified in accordance to [20] as a;.

Furthermore, consider the total liquid mass in terms of the cross-section of the cryostat
S and the density of the liquid helium py,,

mi, = pL'HS = My, — Mboil, (310)
where H is the height that the liquid level reaches inside the cryostat. Therefore,

dH dmy;,  dmpen

— =g dt 3.11
dt pLS ( )

Equations 3.9 and 3.11 determine the evolution of the thermodynamic values of pressure
and volume (in terms of the liquid level) of the liquid helium inside the cryostat. These
differential equations can be solved numerically using the expression for the internal
energy found in [27] based on a linear regression on experimental data.

3.2. Numerical model

To solve numerically for the thermodynamic evolution of the liquid helium inside the
cryostat, the following initial conditions are chosen:
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« Boiling mass flow rate: In accordance with [20], this parameter was treated as
a constant through the temporal evolution of the system, and was set to 3.95 x
106—3kgs ™! based on [23].
o Initial gaseous and liquid helium mass inside the cryostat: It was assumed
that the cryostat was initially empty.
« Liquid mass flow rate through the inlet of the cryostat: 4.95 x 1073 kgs™!
« Gaseous mass flow rate through the outlet of the crysotat: 3.9x 1075 kgs™!
o Initial pressure and liquid level: 1.3 Pa and 40.5% respectively.
e Geometry of the cryostat: vertical cylinder with radius r = 0.4 m and height
Hmax0.1m
The system was evolved in an interval of 3000s with At = 50s. The code created to
simulate the system can be found in appendix A. Figure 18 shows the resulting behaviour
of pressure and liquid level inside the cryostat as a function of time.

Simulated cryostat pressure while filling

=
o]
=
o
=l
7]
0
L
(=%
sl
=
7]
=S

L

1500
Time (seconds)

(a) Cryostat pressure as a function of time, as obtained from solving equation 3.3

Simulated cryostat levels while filling

Qo

Cryostat Level

(b) Liquid helium level simulation

Figure 18: Simulated helium behaviour inside a cryostat, obtained after solving numer-
ically equation 3.5
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The thermodynamics of the system are in agreement to what is expected if the liquid
inlet and gaseous outlet are fixed to a particular value, as long as the incoming liquid
mass flow rate is greater than the gaseous outflow. However, the results found disagree
with those reported in [26]. This could be caused by a varying inlet mass flow rate that
is not reported in the literature found, and which is probably related to the experimental
data points measured for a particular application.

4. Conclusion

In this project, we implemented a COMSOL model to simulate mechanical resonance
frequency and quality factor of a phononic crystal membrane made out of silicon ni-
tride. A comparison of simulated values with measurements reported in literature shows
a very good agreement for a mm-scale membrane with resonance frequencies ~ 1.5 MHz
and quality factors Q ~ 10%. As a first step towards adapting the membrane design
for high-frequency gravitational wave detection, I simulated a membrane with a tenfold
larger (i.e., cm-scale) lateral extent. The resulting resonance frequencies ~ 150 kHz and
quality factors @ ~ 10'° match the expected linear and quadratic scaling with the lateral
extent, respectively.

Moreover, we find that varying the frame width of the membrane can cause @) peaks
with a measurable impact on the computed Q factor beyond what we could find in the
literature, which can be modelled by a Lorentzian distribution. It is not clear why this
behaviour emerges and will be a matter of research in the future.

Furthermore, the quality factor can be further increased by cooling the membrane to
liquid helium temperatures. As this cooling should not introduce any additional vibra-
tions, we considered operation with a continuous flow cryostat. To estimate the helium
consumption, I implemented a corresponding thermodynamical model in Python, which
provides a first estimate for the temporal evolution of the thermodynamical variables
inside the cryostat.

With regard to further optimizing the membrane geometry, additional systematic varia-
tions of its geometry can be investigated. For example, assessing the impact of the hole
diameter for the honeycomb lattice or adding additional holes of smaller diameter to the
central defect.
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Appendices

A. Cyogenics code

#Python code, done by Juan PA Maldonado
import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint as scp_int
import seaborn as sns
sns.set_style("whitegrid")

#Initial parameters for the calculations

rho = 119 #kg/m3. Density of liquid helium at 4.5K
r = 0.8/2 #m. Radius of thermostat

S = 2#np.pix(r**2) #m~2. Bottom area of surface

P_0 = 1.3 #Pa. Initial pressure inside thermostat
max_height = 0.1 #m

h_O0 = max_height=*0.405 #m. 40.5Y, of the total level.

delta_t = 50 #s
t_initial = O#s
t_final = 3000#s
t = np.arange(t_initial,t_final+delta_t,delta_t)#s. simulation time

mGO = O #kg. Assume no initial evaporated helium
mLO le-3 #kg.

dm_Gout_dt = 3.9e-5 #gaseous outlet flow
dm_Lin_dt = 4.95e-3 # liquid inlet flow.
dm_boil_dt = 3.95e-3 #kg/s. Gas outlet flow.

def u(P,gas_bool=False):

Internal energy for the liquid helium, values obtained in page 5 of the

paper.
Expression valid in the P \in 0.9-1.5 bar range.

if gas_bool==True:
lambda_u = -1.9034e-7
gamma_u = 0.03977
eta_u = 12638.58
else:
lambda_u = 0
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gamma_u = 0.04897
eta_u = -5794.82

return lambda_ux*(P**2) + gamma_u*P + eta_u

#deriving with respect to time:
def du_L_dP_func(P):

lambda_u = 0

gamma_u = 0.04897

return lambda_u*(P) + gamma_u
def du_G_dP_func(P):

lambda_u = -1.9034e-7

gamma_u = 0.03977

return lambda_ux(P) + gamma_u

def enthalpy(u,P,rho):

internal enthalpy of the liquid helium

return u + (P/rho)
#dynamic mathematical models of LIQUID LEVEL (h) and PRESSURE (P)

def dm_L_dt(dm_Lin_dt,dm_boil_dt):
return dm_Lin_dt - dm_boil_dt

def dm_G_dt(dm_boil_dt,dm_Gout_dt):
return dm_boil_dt - dm_Gout_dt

def al_func(dm_Lin_dt,hL,ulL,dm_Gout_dt,uG,hG):

al parameter

return dm_Lin_dt*(hL-ul) +dm_Gout_dt*(uG-hG)

def a2_func(mL,du_L_dP,mG,du_G_dP):

a2 parameter
nnn

return mL*du_L_dP + mG*du_G_dP

def dPdt(P,t,dm_boil_dt,dm_Lin_dt,dm_Gout_dt,mLO,mGO) :

Differential equation describing the change of pressure as a function of
time
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ul = u(P)
uG = u(P,gas_bool=True)

hL
hG

enthalpy (uL,P,rho)
enthalpy (uG,P,rho)

al = al_func(dm_Lin_dt,hL,ulL,dm_Gout_dt,uG,hG)

du_L_dP
du_G_dP

du_L_dP_func(P)
du_G_dP_func(P)

mlL = dm_L_dt(dm_Lin_dt,dm_boil_dt)*t + mLO

mG = dm_G_dt(dm_boil_dt,dm_Gout_dt)*t + mGO

heat_term = (du_L_dP + du_G_dP) + S*max_height #Q = U -int(VdP) for fixed
volume, -> dQdt = (dudP + V)dPdt

a2 = a2 _func(mL,du_L_dP,mG,du_G_dP) + heat_term

return (al/a2) + (dm_boil dt*(hG-hL+uL-uG))/a2

def dhdt(h,t,dm_Lin_dt,dm_boil_dt,rho,S):
Differential equation describing the change of liquid level as a function
of time
rho = density of liquid, S= bottom surface of thermostat

return (dm_Lin_dt - dm_boil_dt)/rho*S

Height = scp_int(dhdt,h_0,t,args=(dm_Lin_dt,dm_boil_dt,rho,S))
Pressure = scp_int(dPdt,P_0,t,args=(dm_boil_dt,dm_Lin_dt,dm_Gout_dt,mLO,mG0))

plt.figure(figsize=(16,6))

plt.plot(t,Pressure,marker='o',linestyle='None',markersize=2)

plt.title('Simulated cryostat pressure while
filling',fontsize=18,fontweight="'bold")

plt.xlabel('Time (seconds)',fontsize=15)

plt.ylabel('Cryostat Pressure (Bar)',fontsize=15)

plt.show()

plt.figure(figsize=(16,6))

plt.plot(t,100*Height/max_height ,marker='o',linestyle='None',markersize=2)

plt.title('Simulated cryostat levels while
filling',fontsize=18,fontweight="'bold")

plt.xlabel('Time (seconds)',fontsize=15)

plt.ylabel('Cryostat Level 7',fontsize=15)

plt.show()
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