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Abstract

This project investigates both, higher order- and parametric-uncertainties of the
trilinear Higgs coupling λhhh. Concepts like regularization and renormalization
are briefly explained and applied to the renormalization scheme conversion of La-
grangian parameters and subsequently λhhh. The parametric uncertainty is studied
in both the Standard Model and one Beyond the Standard Model theory.

1



Contents

1 Introduction 3
1.1 The Higgs sector in the Standard Model . . . . . . . . . . . . . . . . . . 3
1.2 The trilinear Higgs coupling λhhh . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The study of λhhh with anyBSM . . . . . . . . . . . . . . . . . . . . . . . 5

2 Higher order corections in quantum field theories 6
2.1 Regularization and renormalization . . . . . . . . . . . . . . . . . . . . . 6
2.2 Renormalization schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Renormalization scheme translation of λhhh . . . . . . . . . . . . . . . . . 8

2.3.1 Renormalization of th . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Renormalization of v . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 parametric uncertainty of λhhh in the SM 9
3.1 Preliminary investigations . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 parametric uncertainty estimates for λhhh . . . . . . . . . . . . . . . . . . 12

3.2.1 The ”primitive” approach . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 The Gaussian and sum of squares approaches . . . . . . . . . . . 12
3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Parametric uncertainty of λhhh in the SSMZ2 15
4.1 The SSMZ2 BSM model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 λhhh in the SSMZ2 model . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Parameter uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusions 19

6 Acknowledgements 19

2



1 Introduction

The Standard Model of particle physics (SM) governs our current description of funda-
mental interactions. With the exception of gravity, it is able to describe the fundamental
particles and their interactions. Among these particles, the Higgs boson plays a special
place. The study of the Higgs sector in the SM as well as in theories beyond the Stan-
dard Model (BSM) promises interesting new physics and solutions to problems of the
SM. Current research in phenomenology emphasizes precision calculations as well as the
investigation of specific parameters in the light experimental constrints.

1.1 The Higgs sector in the Standard Model

Consider only the kinetic and potential Higgs-terms for of the tree level SM Lagrangian

L ⊃ (DµΦ)† (DµΦ)− V (Φ) , (1)

with

Φ =
1√
2

( √
2G+

v + h+ iG

)
, V (0)(Φ) = µ2|Φ|2 + λ|Φ|4 . (2)

Tree level quantities are leading order terms in the pertubative expansion of a Lagrangian
in a quantum field theory. The implications of higher order corrections are dicussed in
chapter (2). The Higgs field is expanded around the minimum of the potential at its
vacuum expectation value v: φ = 〈φ〉 + δφ = v + h(x). Inserting Φ into V (Φ) and
expanding, while disregarding terms involving G and G+, we arrive at

V (0) ⊃ µ2

2
(v + h)2 +

λ

4
(v + h)4

=
µ2

2
v2 +

λ

4
+ (µ2v + λv3)h+ (

3

2
λv2 +

µ2

2
)h2 + λvh3 +

λ

4
h4 .

(3)

Introducing the new parameters th and m2
h, the potential can be reparametrized into

th ≡ (µ2 + λv2)v , m2
h ≡ µ2 + 3λv2 (4)

=⇒ V (0) ⊃ thh+
1

2
m2
hh

2 +
m2
h −

th
v

2v
h3 +

m2
h −

th
v

8v2
h4 . (5)

We use the derivatives of the reparametrized potential to define the quantities λhhh and
λhhhh as

λhhh ≡
∂3V

∂h3

∣∣∣∣
min

, λhhhh ≡
∂4V

∂h4

∣∣∣∣
min

. (6)

The minimalization condition of the potential can be expressed as

∂V (0)

∂h

∣∣∣∣
min

!
= 0 = th . (7)
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Therefore we arrive at the tree level expression of λhhh

λhhh ≡
∂3V

∂h3

∣∣∣∣
min

=
3(m2

h − th/v
v

. (8)

When investigating λBSMhhh in BSM theories, usually the parameter κBSMλ is introduced
as

κBSMλ =
λBSMhhh

λSMhhh
, (9)

in order to quantify the deviation from the SM value.

1.2 The trilinear Higgs coupling λhhh

The trilinear Higgs coupling λhhh is an exceptionally interesting quantity for numerous
reasons. In 2012, a SM-like Higgs particle was discovered at the CERN Large Hadron
Collider (LHC) [1], proving also the existence of the Higgs potential. The measurement
of the SM-like Higgs mass provided the electroweak minimum and the local curvature of
said potential. However, the shape of the Higgs potential is also governed by λhhh and
λhhhh. Investigations of these parameters could reveal answers to open questions about
the electroweak phase transition in the early universe. Another reason for the study of
λhhh is its sensitivity for BSM physics (eg. couplings to additional Higgs bosons). The
SM implements a minimal Higgs sector, but an extended sector could provide a rich
source for explanations of phenomena, like e.g. dark matter, that can’t be explained
within the SM.
The experimental study of λhhh via double Higgs production at hardon colliders is domi-
nated by the two leading order processes, shown in figure (1). Figure (2) shows the cross
section of the double Higgs production as a function of κBSMλ . The theory prediction for
κBSMλ is currently constrained by experiment to a range of −1 < κBSMλ < 6, provided
that no other couplings do not significantly deviate from the SM prediction.

t

Figure 1: Leading order processes of two Higgs production
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Figure 2: Total crossection for double Higgs production from the ATLAS collaboration.

1.3 The study of λhhh with anyBSM

The program anyBSM, developed by Henning Bahl, Johannes Braathen, Martin Gabel-
mann and Georg Weiglein provides the ability to calculate λhhh at one-loop (1L) order
in the SM and BSM theories. In this project, anyBSM is used to estimate two-loop uncer-
tainties on λhhh and calculate parametric uncertainties of λhhh, by taking into account
experimental uncertainties for SM input parameters.
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2 Higher order corections in quantum field theories

2.1 Regularization and renormalization

In an interacting quantum field theory (QFT), the parameters of the Lagrangian recieve
higher order corrections. Divergences inevitably occur in the associated calculations
and have to be treated in order to extract physically meaningful results. This delicate
process can be divided into two major steps.
Regularization deals with the isolation of the divergencies. Multiple methods for several
types of divergences exist, and in the following, an example of a common method of
regularization, the so called dimensional regularization (DREG) will be shown. More
detailed examinations on the topic can be found in [3], [4] and [5]. Consider the following
one-loop integral, which is UV divergent.

A(x) = (16π2)

∫
dk4

(2π)4

1

(k2 + x)
(10)

The main step in the procedure is the modification of the spacetime dimension 4→ d =
4− 2ε for the integration. The integration element changes accordingly

dk4

(2π)4
→ µ2ε dk

d

(2π)d
(11)

In order to preserve the mass dimension of the intrgral, the parameter µ (regularization
scale) has to be introduced. A(x) can be evaluated as

A(x) = (16π2)µ2ε

∫
dkd

(2π)d
1

(k2 + x)
= (16π2)

πd/2µ2εΓ(1− d
2
)

(2π)d
xd/2−1

= x

[
−1

ε
+ γE − log(4π)− log

(
µ2
)

+ log(x)− 1

] (12)

Where γE is the Euler-Mascheroni constant. After the integration, the limit ε → 0 ⇔
d→ 4 has to be taken to return to four-dimensional spacetime. This limit reveals that
the divergence has been separated into the 1/ε pole.
Following the identification and isolation of the divergence, the process of renormaliza-
tion removes the divergence from physical observables. As an example, we consider the
propagator of a scalar field, which yields the following tree level result

S
(0)
h = = i(p2 − (m0

h)
2)−1 (13)

The higher order corrections can be considered in a particular way, namely by collecting
all one particle irreducible (1PI) diagrams via a Dyson resummation, 1PI diagrams are
the set of all diagrams that are not separable into two disconnected diagrams by cutting
one internal line.

Sh(/p) = + 1PI + 1PI 1PI + . . .

1

(14a)

=
i

p2 − (m2
h)ren − Σ̂h(p2)

. (14b)
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The term Σ̂ appearing in the propagator in eq. (14) is the renormalized self energy of
the particle. Beause Σ(p2) is a divergent quantity, one has to introduce a counterterm
δCTm2

h. In this consideration, also a counterterm for scalar field δZφ appears.

Σ̂(p2) = +︸ ︷︷ ︸
Σ(p2)

+ ︸ ︷︷ ︸
δCTm2

h+(p2−m2
h)δZφ

(15a)

The physical mass (pole mass) of a particle is defined by the pole of the propagator
(14). We define the pole mass Mh by the condition

p2 − (m2
h)ren − Σ̂h(p

2) = 0 (16)

=⇒ M2
h = (m2

h)ren + Σ̂h(p
2 = M2

h)

= (m2
h)ren + Σ̂h{p2 = (m2

h)ren + Σ̂h(M
2
h)}

= (m2
h)ren + Σ̂h(p

2 = (m2
h)ren)︸ ︷︷ ︸

1L

+ Σ̂h(p
2 = M2

h)
∂Σ̂

∂p2
(m2

h)ren)︸ ︷︷ ︸
O(2L)

(17)

Combining equations (15) and (17), we find

M2
h = (m2

h)ren + Σ̂h(p
2 = (m2

h)ren) = Σh(p
2 = (m2

h)ren)|fin + δCTm2
h|fin (18)

2.2 Renormalization schemes

In this project, two renormalization schemes were chosen, the on shell scheme (OS)
and the modified minimal substraction scheme MS, which differ by the choice of the
counterterm. The MS scheme is designed to only cancel the divergent part

δCT,MSm2
h|fin = 0 (19)

In the OS scheme, the renormalized mass is set to be the physical mass, therefore

δCT,OSm2
h|fin

!
= −Σh(p

2 = (m2
h)ren)|fin (20)

The counterterms are related, since both schemes treat the renormalization of the bare
parameter (m0

h)
2. Thus, we can translate between the schemes as follows

(m0
h)

2 = (m2
h)ren,MS + δCT,MSm2

h︸ ︷︷ ︸
−Σ(p2=(m2

h)ren)|div

= (m2
h)ren,OS + δCT,OSm2

h︸ ︷︷ ︸
−Σ(p2=(m2

h)ren)|div+fin

(21)

=⇒ (m2
h)ren,MS = (m2

h)ren,OS︸ ︷︷ ︸
M2

h

−Σ(p2 = (m2
h)|fin︸ ︷︷ ︸

Σ̂(p2=(m2
h)ren)|MS

. (22)
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2.3 Renormalization scheme translation of λhhh

The following bare Lagrangian-quantities that contribute to λhhh recieve quantum cor-
rections:

t0h → th + δCTth ,

(m2
h)

0 → m2
h + δCTm2

h ,

v0 → v + δCTv ,

h0 → Z
1/2
h h = h

(
1 +

1

2
δCTZh + · · ·

)
.

(23)

The conversion of the (m2
h) parameter has been discussed above. This chapter focuses

on the renormalization of th and v.

2.3.1 Renormalization of th

The renormalization schemes of the so called tadpole parameter th can be translated
analogously to (21), however further considerations have to be taken into account. The
equation

t0h = (th)ren,MS + δCT,MSth = (th)ren,OS + δCT,OSth (24)

only holds if both schemes are evaluated either at the tree level, or the one-loop mini-
mum of the Higgs potential V . The Fleischer-Jegerlehner scheme choses the tree level
minimum of the potential, i.e. th = 0 and defines the MS counterterm to only cancel the
divergent part of the one-loop contributions. This approach is the default treatment of
the tadpole diagrams in anyBSM.

2.3.2 Renormalization of v

The vacuum expectation value v can be expressed in terms of the masses of the W- and
Z-Boson, and the electric charge e in the following way

v =
2MW

e

√
1− M2

W

M2
Z

=
2MW√
αQEDπ

√
1− M2

W

M2
Z

. (25)

Following the chain rule, the counterterm δCTv as a function of its parameters is

δCTv

v
=
∑
x

∂
∂X
v

v
δCTv , x = {MW ,MZ , e} (26)

The renormalization of MW and MZ is identical to (m2
h). The renormalization of the

electric charge e needs some further consideration.
In chapter (2.1), the self energy of a particle was introduced as a consequence of higher
order corrections in in the propagator of a scalar particle. When considering gauge
bosons (e.g. γ, W,Z), the Ward-Takahashi identity can be applied

pµΣµν
V V ′ = 0 =⇒ Σµν

γγ(p
2) = (p2gµν − pµpν)ΠV V ′(p2) , (27)
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Following [2] (p.661 et seq.), we arrive at the expression for the counterterm δe of the
electric charge

δe

e
=

1

2
Πγγ(p

2 = 0)(1) +
sin(θw)

cos(θw)

ΣT
γZ(p2 = 0)

M2
Z

, V V ′ = {γγ,WW,ZZ,Zγ} (28)

The first term consists of the photon vacuum polarization, which contians contributions
from heavy and light particles,

Π(1)
γγ (p2 = 0) = Π(1)

γγ (p2 = 0)

∣∣∣∣
heavy

+ Π(1)
γγ (p2 = 0)

∣∣∣∣
light︸ ︷︷ ︸

IR div.

, (29)

where the light-fermion contributions are IR-divergent at vanishing external momen-
tum. The divergence can be cleverly avoided by introducing the quantity ∆α, which is
experimentally obtained,

Π(1)
γγ (p2 = 0)

∣∣∣∣
light︸ ︷︷ ︸

IR div.

= Π(1)
γγ (p2 = 0)

∣∣∣∣
light

− Σ
T,(1)
γγ (p2 = M2

Z)

M2
Z︸ ︷︷ ︸

∆α

+
Σ
T,(1)
γγ (p2 = M2

Z)

M2
Z︸ ︷︷ ︸

not IR div.

(30)

2.3.3 Results

Following the chain rule analogously to (26), we arrive at the counterterm δCTλhhh of
the trilinear coupling

δCTλhhh =
∂λ

(0)
hhh

∂m2
h

δCTm2
h +

∂λ
(0)
hhh

∂th
δCT th +

∂λ
(0)
hhh

∂v
δCTv (31)

The translation between the schemes is

λ
(0)
hhh = (λhhh)ren,MS + δCT,MSλhhh = (λhhh)ren,OS + δCT,OSλhhh . (32)

Numerical results at one-loop order, obtained by anyBSM, for λhhh are

(λhhh)ren,OS = 176.758844804 GeV, (33)

(λhhh)ren,MS = 180.406725994 GeV. (34)

Since both schemes have to be equal for infinite-loop order, the comparison of the results
delivers an estimate for the higher order effects to be of the order of apprrox 3.65 GeV.

3 parametric uncertainty of λhhh in the SM

3.1 Preliminary investigations

Since λhhh is not known to infinite-loop order, uncertainty estimates play an important
rule. In section (2.3.3), higher order contributions to λhhh were estimated. Another
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source of uncertainty arises from the experimentally measured input-parameters of the
SM (parametric uncertainty), which is investigated in this chapter.
Input-parameters entering λhhh at tree level can be read of equations (8) and (25). This
consideration also investigates the top-quark mass parameter, which provides the main
contribution at one-loop order. The values and associated uncertainties are provided by
the Particle Data Group [6].

mpdg
h = (125.25± 0.17) GeV

mpdg
Z = (91.1876± 0.0021) GeV

mpdg
W = (80.377± 0.012) GeV

mpdg
t = (172.5± 0.7) GeV

αpdg = 7.297352569311× 10−3 ± 1.5× 10−10

(35)

In order to find the contributions from the parametric uncertainties on λhhh, the input
parameters for these quantities were changed in the calculation in anyBSM. Figure 3
illustrates the parametric uncertainty. The numerical values are listed in table 2. The
contribution of ∆mh is the largest, since mh enters λhhh quadratically at tree level.
Despite entering only at one-loop order, the contribution of ∆mt is half as large as that
of ∆mh.

Figure 3: Influence of input parameters on λhhh
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parameter mh v mt

∆λhhh / [GeV] 0.5302 0.0589 0.2903
∆λhhh / [%] 0.3 0.0334 0.1643

Table 1: Numerical values of parametric uncertainties.

In order to investigate the parametric uncertainty of v, the respective, experimentally
measured parameters in eq. (25) can be examined separately. Fig. 4 illustrates the
assigned parametric uncertainties. The largest uncertainty, caused by ∆mW is below
one order of magnitude smaller that the one caused by ∆mh. Since the experimental
uncertainty of αpdg is drastically smaller than that of the other parameters, the assigned
parametric uncertainty is in any case negligible.

Figure 4: Influence of v input parameters on λhhh

parameter mW mZ α

∆λhhh / [GeV] 0.0483 0.0107 1.475 ×10−6

∆λhhh / [%] 0.027 0.006 8.35 ×10−7

Table 2: Numerical values of parametric uncertainties in v.
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3.2 parametric uncertainty estimates for λhhh

3.2.1 The ”primitive” approach

In the previous section, the parametric uncertainties, caused by experimentally measured
input parameters on λhhh have been investigated separately. In order to find a maximum
value on the parametric uncertainty, simultaneous changes have to be included as well. In
the so called ”primitive” approach, the values of the input parameters have been varied
only in terms of maximal or minimal estimates, e.g. x → x + ∆x ∨ x → x − ∆x.
A more sophisticated approach would be the proper minimalization/maximization of a
multivariable function, however this was not pursued in this project. Table 3 shows the
settings of the input parameters for minimalization and maximization of λhhh in the
primitive approach.

parameter mh mW mZ α mt

min mpdg
h + ∆mpdg

h mpdg
W + ∆mpdg

W mpdg
Z −∆mpdg

Z αpdg + ∆αpdg mpdg
t ∆−mpdg

t

max mpdg
h −∆mpdg

h mpdg
W −∆mpdg

W mpdg
Z + ∆mpdg

Z αpdg −∆αpdg mpdg
t ∆ +mpdg

t

Table 3: Input parameters for minimalization- and maximization-case in the primitive
approach.

3.2.2 The Gaussian and sum of squares approaches

Two well established methods in the field of error analysis, namely the sum of squares
(∆λhhh)S and Gaussian (∆λhhh)G approach were also applied.

(∆λhhh)G =

((
∂λhhh
∂mh

∣∣∣∣
mpdgh

)2

(∆mh)
2 +

(
∂λhhh
∂mW

∣∣∣∣
mpdgW

)2

(∆mW )2 +

(
∂λhhh
∂mh

∣∣∣∣
mpdgZ

)2

(∆mZ)2

+

(
∂λhhh
∂α

∣∣∣∣
αpdg

)2

(∆α)2 +

(
∂λhhh
∂mt

∣∣∣∣
mpdgt

)2

(∆mt)
2

)1/2

(36)

(∆λhhh)S =
(

(∆mh)
2 + (∆mW )2 + (∆mZ)2 + (∆α)2 + (∆mt)

2
)1/2

(37)

Since anyBSM calculates λhhh at one-loop order, the derivatives in eq. (36) were calculated
numerically using the method of central- and forward-differentiation. The choice of the
values of these derivatives was made according to the plots shown in fig. 5.
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Figure 5: Numerical derivatives of λhhh with respect to the experimental parameters.
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3.2.3 Results

The direct comparison of all estimates for the parametric uncertainty on λhhh is shown
in fig. 6. Numerical results are illustrated in table 4. The primitive approach deliveres
the largest error, followed by the sum of squares approach and the smallest estimate is
provided by the Gaussian method.

Figure 6: Parametric uncertainty of λhhh according to the applied approaches.

scheme primitive Gaussian sum of squares

∆λhhh / [GeV] 0.8779 0.7205 0.6054
∆λhhh / [%] 0.497 0.408 0.343

Table 4: Numerical values of the parametric uncertainty estimates.
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4 Parametric uncertainty of λhhh in the SSMZ2

4.1 The SSMZ2 BSM model

The SSMZ2 model describes a BSM model that includes an additional, real Singlet S,
which introduces one new degree of freedom to the gauge sector. Z2 symmetry is imposed
as an additional constraint, which means that the Lagrangian should not change under
the transformation S → −S. The scalar potential therefore only includes new terms
involving even powers of S, it yields,

V (φ, S) = µ2φ†φ+
λ

2
|φ†φ|2 +

m2
S

2
S2 +

λS
2
S4 +

λSH
2
S2φ†φ . (38)

The new terms involve new parameters m2
S,which can be interpreted as a mass parameter

for S, the quartic coupling λS and λSH which can be understood as a coupling between
the SM-like Higgs doublett φ and the newly introduced singlet S. Because of the imposed
Z2-symmetry, the tree level expression for λhhh remains the same as in the SM, but higher
orders take corrections involving S into account and therefore λhhh should be sensitive
to changes of m2

S, λSH and λS.
The tree level mass of the Singlet is

M2
S = m2

S +
λSH

2
v2 . (39)

4.2 λhhh in the SSMZ2 model

As discussed above, a dependence of λhhh on the parameters1 m2
S and λSH is to be

expected. Fig. 7 depicts the impact of m2
S and λSH on λhhh.

Figure 7: Impact of m2
S and λSH on λhhh.

1Corrections involving the quartic coupling λS enter at two-loop order.
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Note, that all plots in fig. 7 converge converge into the SM prediction. MS is calculated
from eq. (39) for all cases. Small values of λSH convey small couplings and converge for
large values of MS (decoupling).

4.3 Parameter uncertainties

Analogously to the SM investigations, the parametric uncertainty of λhhh can be ex-
amined separately for all measured input-parameters (cf. eq. (39)). In this model, the
dependence on m2

S and λSH is considered additionally.
Figures 8, 9 and 10 show the influence of the experimental uncertainties of the respec-
tive input parameters on λhhh. For all parameters, the errorbands converge into the SM
prediction in the same way as in the Standard Model.

(a) Impact of the experimental mh-uncertainty
on λhhh for fixed λSH .

(b) Impact of the experimental mh-uncertainty
on λhhh for fixed mS .

Figure 8: Parametric uncertainty of mh.
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(a) Impact of the experimental mw-uncertainty
on λhhh for fixed λSH .

(b) Impact of the experimental mw-uncertainty
on λhhh for fixed mS

Figure 9: Parametric uncertainty of mW .

(a) Impact of the experimental mt-uncertainty
on λhhh for fixed λSH .

(b) Impact of the experimental mt-uncertainty
on λhhh for fixed mS .

Figure 10: Parametric uncertainty of mt.

17



4.4 results

In order to obtain proper uncertainty estimates, same methods as in sec. (3.2) can
be applied to the SSMZ2 case. Figures (11) and (12) depict λhhh with the assigned
errorbands for the respective estiamates. For both cases, fixed λSH or fixed mS the
errorband estimates converge into the SM case (cf. fig. 6).

Figure 11: Parametric uncertainty of λhhh for fixed λSH .

Figure 12: Parametric uncertainty of λhhh for fixed mS.
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5 Conclusions

In this project, anyBSM was applied in order to obtain both higher order- and parametric-
uncertainties of the trilinear Higgs coupling λhhh. Especially for the renormalization
scheme conversion, the concepts of renormalization and regularization were introduced
and to some degree familiarized. The study of the parametric uncertainty was conducted
not only in the SM but also in the SSMZ2 BSM model. The BSM considerations
converged neatly into the SM case, showcasing advanced concepts like decoupling.
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