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Abstract

This project investigates both, higher order- and parametric-uncertainties of the
trilinear Higgs coupling Apnn. Concepts like regularization and remormalization
are briefly explained and applied to the renormalization scheme conversion of La-
grangian parameters and subsequently Apn,. The parametric uncertainty is studied
in both the Standard Model and one Beyond the Standard Model theory.
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1 Introduction

The Standard Model of particle physics (SM) governs our current description of funda-
mental interactions. With the exception of gravity, it is able to describe the fundamental
particles and their interactions. Among these particles, the Higgs boson plays a special
place. The study of the Higgs sector in the SM as well as in theories beyond the Stan-
dard Model (BSM) promises interesting new physics and solutions to problems of the
SM. Current research in phenomenology emphasizes precision calculations as well as the
investigation of specific parameters in the light experimental constrints.

1.1 The Higgs sector in the Standard Model
Consider only the kinetic and potential Higgs-terms for of the tree level SM Lagrangian

L2 (D,®)" (D*®) —V(®), (1)
with . .
P = 7 (U ﬁi Z_G) : V(D) = 12D + D). (2)

Tree level quantities are leading order terms in the pertubative expansion of a Lagrangian
in a quantum field theory. The implications of higher order corrections are dicussed in
chapter (2). The Higgs field is expanded around the minimum of the potential at its
vacuum expectation value v: ¢ = (¢) + d¢ = v + h(z). Inserting ® into V(P) and
expanding, while disregarding terms involving G and G, we arrive at

G A
VO S = (v+h)*+ (v +h)*
s A 3 Y 3, A
= 7“2 +o+ (120 + )b + (§Au2 + E)h + Avh® + 2Rt

Introducing the new parameters t;, and m3, the potential can be reparametrized into

tn = (1 + M), m; = u? + 3\? (4)
1 mi — mi —
— VO S th+ —mih® + v pdp vyt 5
A+ oM + 20 + 82 5)
We use the derivatives of the reparametrized potential to define the quantities Ay, and
Ahhhh @S v 4y
Ahh = ——= A = — ) 6
hhh = Hrs . hhih = 5 . (6)

The minimalization condition of the potential can be expressed as

oV

|
= 0=t (7)
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Therefore we arrive at the tree level expression of Ay,

PV _ 3(m3 —ty/v

Ahhh = e ” (8)

min

When investigating AZ5M in BSM theories, usually the parameter

as

BSM s introduced

)\BSM

K;BSM_ hhh (9)
A - ASM
hhh

in order to quantify the deviation from the SM value.

1.2 The trilinear Higgs coupling \;;;

The trilinear Higgs coupling Apn, is an exceptionally interesting quantity for numerous
reasons. In 2012, a SM-like Higgs particle was discovered at the CERN Large Hadron
Collider (LHC) [1], proving also the existence of the Higgs potential. The measurement
of the SM-like Higgs mass provided the electroweak minimum and the local curvature of
said potential. However, the shape of the Higgs potential is also governed by Apn, and
Annnn- Investigations of these parameters could reveal answers to open questions about
the electroweak phase transition in the early universe. Another reason for the study of
Anhp 18 its sensitivity for BSM physics (eg. couplings to additional Higgs bosons). The
SM implements a minimal Higgs sector, but an extended sector could provide a rich
source for explanations of phenomena, like e.g. dark matter, that can’t be explained
within the SM.

The experimental study of A\, via double Higgs production at hardon colliders is domi-
nated by the two leading order processes, shown in figure . Figure shows the cross

section of the double Higgs production as a function of M. The theory prediction for

kB5M i currently constrained by experiment to a range of —1 < k¥5M < 6, provided

that no other couplings do not significantly deviate from the SM prediction.

Figure 1: Leading order processes of two Higgs production
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Figure 2: Total crossection for double Higgs production from the ATLAS collaboration.

1.3 The study of )\;;; with anyBSM

The program anyBSM, developed by Henning Bahl, Johannes Braathen, Martin Gabel-
mann and Georg Weiglein provides the ability to calculate Aypy, at one-loop (1L) order
in the SM and BSM theories. In this project, anyBSM is used to estimate two-loop uncer-
tainties on App, and calculate parametric uncertainties of Ay, by taking into account
experimental uncertainties for SM input parameters.



2 Higher order corections in quantum field theories

2.1 Regularization and renormalization

In an interacting quantum field theory (QFT), the parameters of the Lagrangian recieve
higher order corrections. Divergences inevitably occur in the associated calculations
and have to be treated in order to extract physically meaningful results. This delicate
process can be divided into two major steps.

Regularization deals with the isolation of the divergencies. Multiple methods for several
types of divergences exist, and in the following, an example of a common method of
regularization, the so called dimensional regularization (DREG) will be shown. More
detailed examinations on the topic can be found in [3], [4] and [5]. Consider the following
one-loop integral, which is UV divergent.

Az) = (167?%/%@ (10)

The main step in the procedure is the modification of the spacetime dimension 4 — d =
4 — 2¢ for the integration. The integration element changes accordingly

dk* L dk?
@mt " ey
In order to preserve the mass dimension of the intrgral, the parameter u (regularization
scale) has to be introduced. A(z) can be evaluated as
dikt 1
(2m)d (k2 + x)

(11)

2T (1 — %l) d/2—1

= (1677) 2r)

A(z) = (1677)
/ (12)

1
— {‘z + 71 — log(4m) — log (1*) + log(w) — 1

Where g is the Euler-Mascheroni constant. After the integration, the limit e — 0 <
d — 4 has to be taken to return to four-dimensional spacetime. This limit reveals that
the divergence has been separated into the 1/e pole.

Following the identification and isolation of the divergence, the process of renormaliza-
tion removes the divergence from physical observables. As an example, we consider the
propagator of a scalar field, which yields the following tree level result

S =---- = i(p? — (m3)?) ! (13)

The higher order corrections can be considered in a particular way, namely by collecting
all one particle irreducible (1PI) diagrams via a Dyson resummation, 1PI diagrams are
the set of all diagrams that are not separable into two disconnected diagrams by cutting
one internal line.

Sh(p) =----- + =P -+ ---AP)- P + o (14a)

- — (14b)




The term 2 appearing in the propagator in eq. |D is the renormalized self energy of
the particle. Beause Y(p?) is a divergent quantity, one has to introduce a counterterm
6°Tm2. In this consideration, also a counterterm for scalar field §Z4 appears.

S(p?) = L + O + (15a)

TV
_ 6€Tm2 +(p2—mf)sZy

S(p2)

The physical mass (pole mass) of a particle is defined by the pole of the propagator
. We define the pole mass M by the condition

P = (Mip)ren — X (p?) = 0 (16)

= le = (mi)ren + ZA:h(pg = le)
= (mi)ren + Eh{p2 = (m%)ren + Zh(M}%)}

2 D (2 = (m2 D (2 = M2 % 2 (17)
= (M}, )ren +\ n(p” = (mh)Ten)J"i‘ n(p™ = h)apg (m},)ren)
1 ~ ~ -
O(2L)

Combining equations and , we find

Mi% = (m%z)ren + zA:h(pQ = (mi)ren) = Eh(pQ = (mi)ren”ﬁn + 5CTmi|fin (18)

2.2 Renormalization schemes

In this project, two renormalization schemes were chosen, the on shell scheme (OS)
and the modified minimal substraction scheme MS, which differ by the choice of the
counterterm. The MS scheme is designed to only cancel the divergent part

SETMSm2| i = 0 (19)
In the OS scheme, the renormalized mass is set to be the physical mass, therefore
!
5CT’OSmi21|fin = _Zh(pZ = (mi)ren”fm (20)

The counterterms are related, since both schemes treat the renormalization of the bare
parameter (m$)?. Thus, we can translate between the schemes as follows

(M) = (m})yenmis + 07Ty = (m})yenos + 87y, (21)
—— ——
7Z(p2:(m}21)ren)|div 72(p2:(m}21)ren)‘div+ﬁn
2 o 2 . E 2 2 ) 22
= (M})en 315 _Smh)ren,os 2 (p° = (mh>|fw§- (22)
M2 (0= (12 o) TS



2.3 Renormalization scheme translation of )\,

The following bare Lagrangian-quantities that contribute to Ay, recieve quantum cor-
rections:

19—ty + 6Tty
(m3)" — mj, +6“Tmi
W0 =5 v+ 6Ty (23)

1
hoéZ,i/zh:h<1+§6CTZh+-~) .

The conversion of the (m?) parameter has been discussed above. This chapter focuses
on the renormalization of ¢;, and v.

2.3.1 Renormalization of ¢;,

The renormalization schemes of the so called tadpole parameter ¢, can be translated
analogously to , however further considerations have to be taken into account. The
equation o

tO _ (th)ren,m + (5CT’MSth — (th)ren,OS + (5CT’OSth (24)
only holds if both schemes are evaluated either at the tree level, or the one-loop mini-
mum of the Higgs potential V. The Fleischer-Jegerlehner scheme choses the tree level
minimum of the potential, i.e. ¢, = 0 and defines the MS counterterm to only cancel the
divergent part of the one-loop contributions. This approach is the default treatment of
the tadpole diagrams in anyBSM.

2.3.2 Renormalization of v

The vacuum expectation value v can be expressed in terms of the masses of the W- and
Z-Boson, and the electric charge e in the following way

2M M3 20M, M3,
v=" - W LY A - (25)
€ MZ VOQEDT MZ

Following the chain rule, the counterterm 6°7v as a function of its parameters is
5Ty iy
= Z%(SCTva T = {MW7MZ7€} (26)
v v
xX

The renormalization of My, and My is identical to (m37). The renormalization of the
electric charge e needs some further consideration.

In chapter , the self energy of a particle was introduced as a consequence of higher
order corrections in in the propagator of a scalar particle. When considering gauge
bosons (e.g. v, W,Z), the Ward-Takahashi identity can be applied

PuSih, =0 = (%) = (g™ — p"p")vv (p%) (27)



Following [2] (p.661 et seq.), we arrive at the expression for the counterterm de of the
electric charge

de 1 sin(6,,) X2, (p* = 0)
= 1L (p? =0)D w7
2 (P )+ cos(0y,) M2

. V! ={y, WW, ZZ, Z~} (28)

The first term consists of the photon vacuum polarization, which contians contributions

from heavy and light particles,

1 2 1 2
9 (p* = 0) = I (p* = 0)

1,2
+IE e =0) (29)

heavy light

IREV.
where the light-fermion contributions are IR-divergent at vanishing external momen-

tum. The divergence can be cleverly avoided by introducing the quantity A,, which is
experimentally obtained,

ETv(l)(pZ — MQ) ZT7(1)<p2 — M2)
H»(yl»y) <p2 = 0) — H,(yl,}? (pQ — 0) _ e Z + Y e Z (30)
. lighE light Z | Z
IR div. A not TR div.
2.3.3 Results

Following the chain rule analogously to (26), we arrive at the counterterm 67\, of
the trilinear coupling

a)\(o) 8)\(0) a)\(o)
§CTy, . — Y2hhnsCr, 2 hih §CT hhh 5CT 31
L L T L (31)
The translation between the schemes is
A;(LOh)h = (Ahh) pen,5i5 + SETMS N = (Amni)ren0s + 070 Ny - (32)

Numerical results at one-loop order, obtained by anyBSM, for Ay, are

(Auin)ren.0s = 176.758844804 GeV, (33)
(At ) ren s = 180.406725994 GeV. (34)

Since both schemes have to be equal for infinite-loop order, the comparison of the results
delivers an estimate for the higher order effects to be of the order of apprrox 3.65 GeV.

3 parametric uncertainty of )\, in the SM

3.1 Preliminary investigations

Since Appp is not known to infinite-loop order, uncertainty estimates play an important
rule. In section ([2.3.3), higher order contributions to A, were estimated. Another



source of uncertainty arises from the experimentally measured input-parameters of the
SM (parametric uncertainty), which is investigated in this chapter.

Input-parameters entering Ay, at tree level can be read of equations and . This
consideration also investigates the top-quark mass parameter, which provides the main
contribution at one-loop order. The values and associated uncertainties are provided by
the Particle Data Group [6].

pdg

= (125.25 + 0.17) GeV
Pdg — (91.1876 £ 0.0021) GeV
pdg = (80.377 £ 0.012) GeV (35)
mfdg (172.5 £ 0.7) GeV
o = 7.297352569311 x 1073 £ 1.5 x 1071°

In order to find the contributions from the parametric uncertainties on A, the input
parameters for these quantities were changed in the calculation in anyBSM. Figure
illustrates the parametric uncertainty. The numerical values are listed in table 2 The
contribution of Amy, is the largest, since my, enters Apn, quadratically at tree level.
Despite entering only at one-loop order, the contribution of Am, is half as large as that
of Amh.

influence of mesurement uncertainties

177.2

177.0

176.8

Annn [GeV]
——

<= 176.6

176.4

176.2

My vev me
parameters

Figure 3: Influence of input parameters on Appp
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’ parameter H mp, \ v \ my ‘
Alpnn / [GeV] | 0.5302 | 0.0589 | 0.2903
AXpnn /[ [%)] 0.3 | 0.0334 | 0.1643

Table 1: Numerical values of parametric uncertainties.

In order to investigate the parametric uncertainty of v, the respective, experimentally
measured parameters in eq. can be examined separately. Fig. illustrates the
assigned parametric uncertainties. The largest uncertainty, caused by Amy, is below
one order of magnitude smaller that the one caused by Amy. Since the experimental
uncertainty of a?® is drastically smaller than that of the other parameters, the assigned

parametric uncertainty is in any case negligible.

influence of single vev parameters

176.72

176.70

176.68

Ankn [GeV]

176.66

176.64

My

mz

parameters

Figure 4: Influence of v input parameters on Apup

’ parameter H myy ‘ my ‘

«

|

A>\hhh / [GGV]
AXpnn [ %]

0.0483
0.027

0.0107 | 1.475 x107°

0.006

8.35 x1077

Table 2: Numerical values of parametric uncertainties in v.
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3.2 parametric uncertainty estimates for )\

3.2.1 The " primitive” approach

In the previous section, the parametric uncertainties, caused by experimentally measured
input parameters on Ay, have been investigated separately. In order to find a maximum
value on the parametric uncertainty, simultaneous changes have to be included as well. In
the so called ”primitive” approach, the values of the input parameters have been varied

only in terms of maximal or minimal estimates, e.g. * — x + Ax

V

z — x— Ax.

A more sophisticated approach would be the proper minimalization/maximization of a
multivariable function, however this was not pursued in this project. Table [3| shows the
settings of the input parameters for minimalization and maximization of A, in the
primitive approach.

parameter || mp, ‘ my ‘ mz ‘ a ‘ my
. d d a d d d d d
min mh® + AmEY | mip? + Amb | mYY — AmDY | aP® + AaP® | mPYA — mP
d d d d d d d d
max mp® — Amp® | my? — Amy? | my? + AmY | aP? — Ao | my™ A + mpY

Table 3: Input parameters for minimalization- and maximization-case in the primitive
approach.

3.2.2 The Gaussian and sum of squares approaches

Two well established methods in the field of error analysis, namely the sum of squares
(AMpnn)s and Gaussian (AMyun)a approach were also applied.

2 2
_ OAnnh 2 OAnhh 2 ONnhn
(Annn)e = ( ( mzd9> (Amy)” + <—3mw m{;}g> (Amy)” + Brmiy

8mh

> (Amz>2

pdg
my

) 2 1/2
+ (% ) ) (Aa)® + (ag—;;:b m) (Amt)2>
t (36)
(M) = ((Am)? + (Ami)? + (Amg)? + (2a) + (am?) " (37)

Since anyBSM calculates Ay, at one-loop order, the derivatives in eq. were calculated
numerically using the method of central- and forward-differentiation. The choice of the
values of these derivatives was made according to the plots shown in fig. [f

12
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Figure 5: Numerical derivatives of App;, with respect to the experimental parameters.
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3.2.3 Results

The direct comparison of all estimates for the parametric uncertainty on Ay, is shown
in fig. [0l Numerical results are illustrated in table @] The primitive approach deliveres
the largest error, followed by the sum of squares approach and the smallest estimate is
provided by the Gaussian method.

experimental error approximations

175.75
primitive sum of squares Gaussian
method

Figure 6: Parametric uncertainty of A\, according to the applied approaches.

’ scheme H primitive ‘ Gaussian ‘ sum of squares ‘
Al / [GeV] [ 0.8779 [ 0.7205 0.6054
AXpn | %) 0.497 0.408 0.343

Table 4: Numerical values of the parametric uncertainty estimates.
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4 Parametric uncertainty of )\, in the SSMZ2

4.1 The SSMZ2 BSM model

The SSMZ2 model describes a BSM model that includes an additional, real Singlet S,
which introduces one new degree of freedom to the gauge sector. Zs symmetry is imposed
as an additional constraint, which means that the Lagrangian should not change under
the transformation S — —S. The scalar potential therefore only includes new terms
involving even powers of S, it yields,

As
2
The new terms involve new parameters m%,which can be interpreted as a mass parameter
for S, the quartic coupling A\g and Agy which can be understood as a coupling between
the SM-like Higgs doublett ¢ and the newly introduced singlet S. Because of the imposed
Zo-symmetry, the tree level expression for Ayp, remains the same as in the SM, but higher
orders take corrections involving S into account and therefore A, should be sensitive
to changes of m%, A\sg and \g.

The tree level mass of the Singlet is

— 241 é]‘? m_ﬁ? 4 >\S_H2T
V(6,5) = it + SloTof + ot + S5t + S g2l (39

A
M2 =m?+ %zﬁ . (39)

4.2 )\, in the SSMZ2 model

As discussed above, a dependence of A, on the parameterﬂ mfg and Agy is to be
expected. Fig. [7| depicts the impact of m% and Agg on Appp.

)lhhh for fixed )I.SH Ahhh for fixed ms
— Asy=0.5 190 —— Ms=50
Asy=0.6 ms =170 f
178.5 As=0.8 188 ms =100 /
—— Asy=1.0 ms =120
— Aey=12 | 186] — sSM /
> 178.0 —— SM > '
§ § 184
£ £
< 1775 ~< 182
180
177.0
178
250 500 750 1000 1250 100 200 300
Ms [GeV] Ms [GeV]

Figure 7: Impact of m% and Agg on Appp,.

LCorrections involving the quartic coupling Ag enter at two-loop order.
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Note, that all plots in fig. [7| converge converge into the SM prediction. Mg is calculated

from eq. for all cases. Small values of Agg convey small couplings and converge for
large values of Mg (decoupling).

4.3 Parameter uncertainties

Analogously to the SM investigations, the parametric uncertainty of A, can be ex-

amined separately for all measured input-parameters (cf. eq. ) In this model, the
dependence on m% and Agy is considered additionally.

Figures [§] [9] and [I0] show the influence of the experimental uncertainties of the respec-

tive input parameters on App,. For all parameters, the errorbands converge into the SM
prediction in the same way as in the Standard Model.

experimental uncertainty impact of ms
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Figure 8: Parametric uncertainty of my,.
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experimental uncertainty impact of my, fixed Asy
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Figure 9: Parametric uncertainty of myy.
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Figure 10: Parametric uncertainty of m,.
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4.4 results

In order to obtain proper uncertainty estimates, same methods as in sec. can
be applied to the SSMZ2 case. Figures and depict Appp with the assigned
errorbands for the respective estiamates. For both cases, fixed Agy or fixed mg the
errorband estimates converge into the SM case (cf. fig. [f]).

error evolution for fixed Asy=1.0
T I T

I
—— Asy=1.0 primitive approx -

179.0 11 |

~— Asy=1.0 sum of squares
178.5

—— Asy=1.0 Gaussian

178.0

177.5
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177.0

176.5

176.0

\
200 400 600 800 1000 1200 1400
Ms [GeV]

Figure 11: Parametric uncertainty of Ay, for fixed Agg.
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Figure 12: Parametric uncertainty of Ay, for fixed mg.
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5 Conclusions

In this project, anyBSM was applied in order to obtain both higher order- and parametric-
uncertainties of the trilinear Higgs coupling Apnn. Especially for the renormalization
scheme conversion, the concepts of renormalization and regularization were introduced
and to some degree familiarized. The study of the parametric uncertainty was conducted
not only in the SM but also in the SSMZ2 BSM model. The BSM considerations
converged neatly into the SM case, showcasing advanced concepts like decoupling.
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