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Abstract

Based on Dietrich Krebs and Nina Rohringer’s theoretical framework for para-
metric x-ray optical wavemixing, this summer project concerns the 3D visual-
ization of the nonlinear electronic response function, calculated in an ab initio
framework, ABINIT. The visualization framework revolves around parallelepipeds
(conventional unit cells), atom positions, and nonlinear response functions. In ad-
dition, this visualization framework focuses on three compounds: Diamond (C),
Lithium Fluorine (LiF), and Silicon Dioxide (SiO2). Concerning the ab initio
framework, DFT calculations for a rhombohedral perovskite structure, BaTiO3,
are conducted.
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1 Introduction

HavingWilhelm Röntgen discovered such a new type of radiation (x-rays) in 1895, several
fields of science and technology have been broadening their horizons, such as agriculture
[1], medicine [2], and archaeometry [3]. Particularly, x-ray scattering has long played
a key role in structure determination of matter; for instance, x-ray crystallography is a
prevalent method for protein structure determination [4]. In general, a standard x-ray
diffraction study employs wavelengths ranging between 0.05 nm and 0.25 nm, which are
suitable for typical interatomic spacings in crystals [5].
Besides structure determination of matter, there has been a long-standing interest in di-
rect experimental measurement of the valence electron charge distribution. Isaac Freund
[6] stated that such a direct measurement would sharpen the understanding of chemical
bonding within crystals, however, regular x-ray diffraction methods were solely capable
of gauging the total electron charge density. As far as Freund was concerned, tackling
this problem entailed the incorporation of a nonlinear process, spontaneous X-ray para-
metric down-conversion, into the theoretical and experimental framework [6]. In contrast
with Freund’s ideas about x-ray diffraction experiments, Lovesey et al. suggested that
valuable observations of valence electrons were feasible as long as x-rays were supplied
by a synchrotron source [7]. In addition, they propounded an atomic model to analyze
the data on Bragg’s diffraction.

These aforementioned x-ray diffraction approaches aim at making strides in the mi-
croscopic resolution of valence electron distributions, overcoming the valence electrons’
delocalized character in crystals. Purposely, the valance electrons play a relevant role in
material properties, such as magnetoresistance, structural phase transitions, and mag-
netic phenomena [8]. Being a nonlinear process in which x-ray and optical fields mix
within a medium, parametric x-ray and optical wave mixing promises to probe the micro-
scopic details of light-matter interactions [9], hence valence electron distributions. Pur-
posely,“parametric” means that the material system remains unchanged after the light-
matter interaction, i.e. |ψmatter

initial ⟩ = |ψmatter
final ⟩. The x-ray optical wavemixing (XOWM)

processes provide imaging capabilities similar to x-ray diffraction, while the optical field
offers spectroscopic selectivity. Both features lead to specific probing of valence elec-
trons’ response, hence visualizing valence electron dynamics in the atomic-scale regime.
From a experimental view, x-ray parametric down-conversion (XPDC) and sum- and
difference-frequency generation (SFG/DFG) are XOWM processes [9]. Based on the
theoretical framework developed by Dietrich Krebs and Nina Rohringer [10], there is a
common theoretical description of such three XOWM processes.

Primarily, the goal of this summer project is the implementation of 3D visualization of
the nonlinear response function for various crystal structures based on the D. Krebs and
N. Rohringer XOWM framework. For the sake of code testing, additional Density Func-
tional Theory (DFT) calculations for a non-cubic perovskite (BaTiO3) were carried out
because of the limited available data. The following section revolves around theoretical
background and computational details. Subsequently, 3D visualization of the nonlinear
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response function for various crystal structures and DFT calculations are depicted from
Sec. 3. Finally in Sec.4 , there is an outlook on improvements and future steps.

2 Theory & Methods

2.1 Road to visualization

The subsequent aspects, extracted from the paper [10], are essential for building a vi-
sualization computer program for the nonlinear electronic response function. Adopting
a scattering perspective in non-relativistic Quantum Electrodynamics (QED), D. Krebs
and N. Rohringer associated an expression with the observable pattern of scattered
x-rays, i.e. the expectation value of the x-ray-optical scattering observable:〈
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Through a series of simplifications, such as time-dependent perturbation theory and
weak light-matter coupling, Eq. 1 factorizes in terms of incoming x-ray pulse (G

(1)
X IN)σρ,

material’s response to explicit x-ray perturbations (PI(y, t2,x, t1))µ, and material’s re-

sponse to explicit optical perturbations ((G
(1)

OPT)νµ + (S
(1)

OPT)νµ). Purposely, kf and λf
stand for a final plane wave mode throughout the scattering process. For the sake of
crystalline matter, Eq.1 undergoes a transformation into reciprocal coordinates, yielding:〈
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Similar to Eq. 1, the result above entails contributions from matter (gray), x-ray field
(brown) and optical field (blue) in a factorized form.

Given that the goal of this summer project revolves around the visualization of electronic
response, such quantity is essentially captured by:

(PI(y, t2,x, t1))µ = ⟨I| T̂ [(p̂(y, t2))µn̂(x, t1)] |I⟩ (3)

Eq. 3 represents the time-ordered correlation function of the electronic system’s density
n̂(x, t1) with its current density p̂(y, t2) = ψ̂†(y, t2)(−i∇)ψ̂(y, t2), measured in the state
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|I⟩; generally, |I⟩ = |GS⟩, where GS stands for the Ground State.
Having separated Eq. 3 from the radiative aspects of the XOWM process, this scenario
is under the scope of general electronic structure theory. Specifically, on the basis of
DFT, Eq. 3 has a representation in terms Kohn-Sham orbitals:

PI(y, 0,x, t) = 2
occ.∑
i

unocc.∑
a

(
Θ(t)ei(ϵi−ϵa)tMi.a(x,y)Θ(−t)e−i(ϵi−ϵa)tMi.a(x,y)

)
(4)

where the matrix elements Mi,a are given by:

Mi,a(x,y) = ϕ∗
i (x)φa(x)φ

∗
a(y)(−i∇)φi(y) (5)

When numerical evaluation comes to, PI must be evaluated within a finite volume V♢
with periodic boundary conditions:

PI(y, 0,x, t) ≈ w(y)w(x)PI♢(y, 0,x, t) (6)

where w(x) = 1 inside the material, and w(x) = 0 otherwise. Taking the Fourier
transform of PI♢ yields:
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Setting G1 = 0 and q = 0 leads to:
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where G is a reciprocal lattice vector and ω is the photon’s energy.
Finally, through the Fourier-Synthesis, a nonlinear response density is reconstructed
from KI♢ :

RI♢(x, ω) =
1

V

∑
G

eiG·x̂KI♢(0,G, ω) (9)

However, the visualization of the nonlinear electronic response does not concernsRI♢(x, ω)
but |RI♢(x, ω)|2. In addition, different crystal structures lead to different G and space
constraints.
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2.2 Crystal Structure

Conventionally, a description of crystals begins with introducing the mathematical def-
inition of the (direct) lattice. A lattice is a set of regularly spaced points defined by
integer combinations of a set of linearly independent primitive lattice vectors [11]. For
instance, the spatial distribution of such regularly spaced points in 3D is given by:

R = n1a1 + n2a2 + n3a3 n1, n2, n3 ∈ Z (10)

where a1,a2 and a3 are the primitive lattice vectors. Another key element in crystals
structure is the unit cell, which is a region in space that enables to reconstruct a periodic
structure when repeated through space [11]. The last definition to fully characterize an
ideal pure crystal is that of a basis. Once the unit cell has been chosen (see Fig.1), the
basis of the crystal structure is defined with respect to the reference lattice point in such
unit cell. The basis revolves around atoms and their positions[11][12].

Figure 1: A 2D representation of a pe-
riodic structure. There is a
unit cell marked with dotted
lines while black dots stand
for lattice points. Extracted
from [11].

Figure 2: Coordinates of the atoms
in the unit cell with re-
spect to the lower left-
handed corner point. Ex-
tracted from [11].

In general, the position of the center of an atom j of the basis relative to the unit cell is
given by:

rj = xja1 + yja2 + zja3 (11)

where 0 ≤ xj, yj, zj ≤ 1 (fractional coordinate system [12]).
Finally, when reconstructing the crystalline material, the positions of the atoms in the
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crystal are the lattice points, generated by Eq. 10, plus the basis, generated by Eq.11.
In connection with unit cells, there are mainly two type of unit cells: primitive cells and
conventional cells. A primitive unit cell for a periodic crystal is a unit cell that revolves
around a unique lattice point. On the other hand, a conventional unit cell, which could
be either primitive or non-primitive, displays the full symmetry of the lattice [12]. Pur-
posely, there are six parameters that characterize a conventional unit cell: sides (a,b,c)
and angles between such sides (α is the angle between sides a and c, β is the angle
between sides b and c, γ is the angle between sides a and b). In the three-dimensional
space, conventional unit cells are depicted through parallelepipeds (see Fig. 3).

The collection of lattice points is also called Bravais lattice. In the case of three-
dimensional crystalline material, there 14 different Bravais lattices. They are categorized
into six crystal systems called triclinic, monoclinic, orthorhombic, tetragonal, hexago-
nal and cubic. In addtion, the hexagonal system is often divided into two subsystems:
hexagonal and trigonal. The definition of these systems in terms of unit cell param-
eters are given in Table.1. With regard to Table.1, the lattices associated with each

Figure 3: The conventional unit cells of the 14 Bravais lattices in 3D. The small grey
circles stand for lattice points. Extracted from [13].

crystal systems are labeled P = primitive, I = body-centered, C = side-centered, F =
face-centered, and R = rhombohedral. These lattices differs from one another in the
set of linearly independent generating vectors. Unfortunately, the choice of these lattice
vectors is not unique [11] which may lead to an issue when visualization of nonlinear
response function for different crystal systems comes to; equivalently, the crystal systems
and nonlinear response function should be generated through a common set of primitive
lattice vectors and reciprocal lattice vectors to avoid inaccurate visualizations.
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Essentially, the reciprocal lattice vectors are a set of three linearly independent vectors
that allows to build the reciprocal lattice space through integer-only linear combinations
of these vectors. The reciprocal lattice vectors are defined as follows:

b1 = 2π
a2 × a3

a1 · (a2 × a3)

b2 = 2π
a3 × a1

a1 · (a2 × a3)

b3 = 2π
a1 × a2

a1 · (a2 × a3)

(12)

while an arbitrary point in reciprocal space is defined as follows:

G = m1b1 +m2b2 +m3b3 m1,m2,m3 ∈ Z (13)

Besides this previous reciprocal space conception, one could regard the reciprocal space
as either a Fourier transform or families of lattice planes. D. Krebs and N. Rohringer
regards the reciprocal space as families of lattice planes. Basically, the family of lattice
planes are connected with the direction of reciprocal lattice vectors, being orthogonal
to lattice planes, as long as the spacing between these lattice planes is d = 2π

|Gmin| where

Gmin is the minimum length reciprocal lattice vector in this normal direction [11].

System Cell sides Cell angles Lattices

Triclinic a ̸= b ̸= c α ̸= β ̸= γ P
Monoclinic a ̸= b ̸= c α = β = π

2
̸= γ P, C

Orthorhombic a ̸= b ̸= c α = β = γ = π
2

P, I, C, F
Tetragonal a = b ̸= c α = β = γ = π

2
P, I

Trigonal a = b ̸= c α = β = π
2
, γ = 2π

3
P

Hexagonal a = b ̸= c α = β = π
2
, γ = 2π

3
R

Cubic a = b = c α = β = γ = π
2

P, I, F

Table 1: Crystal system for crystals in 3D [13].

2.3 Density Functional Theory (DFT)

Studying quantum many-particle systems under a time-independent framework is a
highly complex task. Solving the many-particle Schrödinger equation for large sys-
tems leads to unsolvable matrix operations [14][15]. Fortunately, DFT circumvents
this problem, carrying out calculations using either the electronic density n(r) in the
Hohenberg-Kohn formulation, or n(r) and the single-particle wavefunctions ψj(r) in the
Kohn-Sham formulation [15]. Dietrich Krebs and Nina Rohringer numerically evaluate
their theoretical framework on the basis of DFT to supply the electronic structure input
for Eq.8. Currently, the numerical calculations are carried out through ABINIT, using
the following exchange functionals: Local Density Approximation (LDA) and General-
ized Gradient Approximation (GGA).
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2.3.1 Constant scissor operator

To overcome the well-known DFT-LDA (DFT-GGA) band gap problem [15], the simplest
approximation revolves around a constant shift of the LDA (GGA) conduction bands
upwards in energy, as follows:

Eqp
n ≈

{
E

LDA/GGA
n , if E

LDA/GGA
n < EFermi.

E
LDA/GGA
n +∆, otherwise.

(14)

where ∆ is known as the “scissor operator”; ∆ is the difference between the DFT-
LDA(GGA) band gap and quasiparticle band gap (G0Wn, n ≥ 0) [16].

2.4 Computational details

ABINIT is a software suite to calculate a variety of electronic-structure-related properties
in materials, such as magnetic, and mechanical properties. Moreover, Green’s functions
and many-body perturbation theory methods are implemented in ABINIT. This software
suite uses norm-conserving pseudopotentials to carry out plane-wave basis calculations
under periodic boundary conditions [17][18]. Finally, in connection with the study of
perovskite, the criteria for convergence were set to 1×10−3 Eh

atom
for energy, and 5×10−5

Eh

a0
for force.

(a)

(b)

Figure 4: BaTiO3, rhombohedral phase : (a) Primitive unit cell. (b) Conventional unit
cell. Barium atoms are in green, Ti atoms are in sky blue, and O atoms are
in red [19][20].
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2.5 Perovskite: BaTiO3

Barium titanate (BT) is a polymorphic compound, ranging over cubic, tetragonal, or-
thorhombic, and rhombohedral crystal structures. It is noteworthy that, apart from
the cubic phase, these phases exhibit the ferroelectric effect [21]. This feature enables
BaTiO3 to be used in electronics, nonlinear optics, and data storage [22]. In connection
with the summer project, carrying out DFT calculations for perovskite crystal structure
compounds provides additional data to benchmark the theoretical framework [10] and
the visualization code.
Previously, D. Krebs and N. Rohringer succeeded in visualizing the nonlinear response
function for cubic crystal structures, such as diamond [10]. Visualization for tetrago-
nal and orthorhombic crystal structures is a trivial extension of such previous success.
Hence, to accomplish the goal of this summer project, DFT calculations for the rhom-
bohedral crystal structure were made. Purposely, to decrease the computation time, the
primitive unit cell was employed throughout DFT calculations. It is noteworthy that the
visualization of the nonlinear response concerns the conventional unit cell (see Fig.4).

3 Results & Discussion

3.1 Visualization code

With regard to the main goal of this summer project, the visualization framework, which
was written in Python, is divided into 3 mains programs as well as some minors programs.
The first program “Grid properties.py” mainly performs space discretization across the
crystal structure. The second program “ K Fourier synthesis.py” is constructed to load
in the reciprocal primitive vectors and the Fourier transform of the time-ordered cor-
relation function (KI♢ function). This program yields four numpy files: “x-grid.npy”,
“y-grid.npy”, “z-grid.npy” and “Rdens.npy”. The latter file is the absolute square of
nonlinear response density while the rest of numpy files concerns space discretization.
Finally, the third program “Visualization general conditions.py” loads in the data from
the second program as well as data on the position of the atoms in the conventional unit
cell; this program yields an extended rendering of |RGS♢(x, ω)|2 across the conventional
unit cell. The response function dependence on space (see Eq. 9) motivates the devel-
opment of a non-rectangular grid generator, which takes into account crystal structure
geometries.

Moreover, this Python implementation prevents atoms from being displayed when they
lie outside the conventional unit cell; regardless of the crystal system, users only pro-
vide the basis and primitive lattice vectors. This feature will potentially accelerate
the benchmarking of the XOWM theoretical framework. In connection with validating
this Python implementation, visualization of the nonlinear response for C (diamond)
and SiO2 (α−quartz) were performed. Although DFT-GGA calculations for BaTiO3

(rhombohedral phase) were made, the KI♢ computation time for this perovskite crystal
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structure turned out to be long; at the time of writing, the KI♢-related code is still
running.

3.2 ABINIT: BaTiO3

In connection with the DFT calculations for BaTiO3, before computing band structures,
ABINIT users should carry out several convergence tests on cut-off energy and k-points
grid. Having set optimal values of such parameters, users should perform structural
relaxations to find the optimal lattice parameters and ideal atomic/ionic positions. In
connection with this system, the optical cut-off energy value is 33 Ha (see Fig.5, and
building a 4× 4× 4 Monkhorst-Pack grid secures energy convergence (see Fig.6).

Figure 5: Cut-off energy convergence test. There is no change in energy larger than 1 ×
10−3 Ha per atom for cut-off energy values greater or equal than 33 Ha.

Figure 6: k-points grid convergence test. There is no change in energy larger than 1
× 10−3 Ha per atom for k-points grid values greater or equal than 4 (Grid:
4× 4× 4).
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The initial crystallographic properties, extracted from the Materials project database,
are displayed below:

Properties Before computations

Space group R3m
a = b = c(Å) 4.08113
α = β = γ(◦) 89.6646

sites u v w
Ba(1) 0.00207 0.00207 0.00207
Ti(1) 0.51644 0.51644 0.51644
O(1) 0.48462 0.48462 0.97375
O(2) 0.97375 0.48462 0.48462
O(3) 0.48462 0.97375 0.48462

Table 2: Crystallographic data for BaTiO3 rhombohedral crystal structure before DFT-
GGA.

The experimental lattice parameters of rhombohedral phase of BaTiO3 are: a(Å) =
4.004 and α(◦) = 89.8 [23]. Generally, the exchange-correlation functional GGA-PBE
overestimates bulk properties [15]. However, the crystallographic data obtained from
ABINIT is moderately in agreement with the theoretical crystallographic data reported
by Zhang and his collaborators [24].

Properties After computations

Space group R3m
a = b = c(Å) 4.06391
α = β = γ(◦) 89.6574

sites u v w
Ba(1) 0.00159 0.00158 0.00158
Ti(1) 0.51654 0.51654 0.51654
O(1) 0.48489 0.48489 0.97358
O(2) 0.97358 0.48489 0.8489
O(3) 0.8489 0.97358 0.48489

Table 3: Crystallographic data for BaTiO3 rhombohedral crystal structure after DFT-
GGA.

Subsequently, in connection with the band structure, ABINIT predicted a band gap
Egap = 2.665 eV on the basis of DFT-GGA, which is in agreement with previous reported
DFT-GGA band gaps of rhombohedral BaTiO3 [25]. In addition, the computed band
structure (see Fig.7) displays an important feature: an indirect band gap [23][24][25].
Given that ABINIT outputs are not opposed to current literature, they are suitable for
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Figure 7: DFT-GGA band structure for the rhombohedral phase of BaTiO3.

computing the nonlinear response function. Purposely, the constant scissor operator
was set to zero because nobody has reported either quasiparticle (GW) or experimental
band gap of BaTiO3.

3.3 Diamond, α-Quartz & LiF

The only available data to test the Python visualization code revolved around diamond,
SiO2 and LiF. Given that D. Krebs and N. Rohringer had previously provided an ex-
tended rendering of |RGS♢(x, ω)|2 for diamond [10], assessing the code’s outcome for
diamond scenario reduced to a comparison of both visualizations. In this case, the
visualization code yielded an extended rendering of the nonlinear response function in
accordance with the one reported by D. Krebs and N. Rohringer [10]. In Fig.8, it is note-
worthy that the nonlinear response correlates with the localization of valence charges
along the valence bonds.
Concerning LiF, the code for arbitrary crystal systems yielded a 3D rendering that
agreed with the visualization of LiF’s |RI |2 generated by the code exclusive for cubic
crystal systems (see Fig.10).
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Finally, there were no antecedent attempts to visualize hexagonal crystal structures,
such as SiO2. In this case, the density of valence electrons and the nonlinear response
were solely correlated around oxygen atoms (see Fig.9).

(a)

(b)

Figure 8: Diamond : (a) The nonlinear response is shown in terms of |RGS♢(x, 0.057)|2
across the conventional unit cell. (b) The electronic density is shown across
the conventional unit cell. Black: carbon atoms.

Purposely, SiO2 is a covalent-ionic compound, and its valence band consists of two sub-
bands separated by an ionic band gap. The uppermost section of its valence band is
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(a)

(b)

Figure 9: SiO2 : (a) The nonlinear response is shown in terms of |RGS♢(x, 0.0569)|2
across the conventional unit cell. (b) The electronic density is shown across
the conventional unit cell. Yellow: Si atoms, red: Oxygen atoms
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Figure 10: Visualization of the nonlinear response for LiF ( |RGS♢(x, 0.4961)|2) across
the conventional unit cell. Green: Li ions, purple: F ions.

formed by a narrow band of O 2pπ non-bonding orbitals while the lower narrow band
revolves around O 2s states with an admixture of Si 3s and Si 3p states. It is noteworthy
that the electron density distribution for the lowest sub-band mainly revolves around
oxygen atoms due to their high electronegativity. On the other hand, for the upper
sub-band, the electron density is localized in the direction orthogonal to the plane of the
O–Si–O bonds [26]. The density of valence electrons illustrated in Fig.9(b) seemingly
displays such features.

4 Conclusion & Recommendations

The current version of the Python code only requires users to input ABINIT output
files and KI♢-data file to display the boundary of the conventional unit cell in dark
grey, the nonlinear response across the conventional unit cell, and atoms. In a sense,
users should henceforth focus on DFT and KI♢ calculations without thinking of a man-
ner of visualizing such data. The code worked properly for cubic crystal structures, as
well. Concerning BaTiO3, when the computations terminate, the visualization of the
nonlinear function for such structure will contribute towards benchmarking the XOWM
theoretical framework.
Worth mentioning is that there are two databases, Materials Project and The Open
Quantum Materials Database (OQMD), that provide primitive lattice vectors and atom
positions for several materials. Such parameters are vital for carrying out ABINIT calcu-
lations, hence RI♢. Finally, having managed to visualize a non-cubic crystal structure,
the formulated and implemented Python visualization framework achieved the principal
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goal of this summer project.
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Grégory Geneste, Philippe Ghosez, Matteo Giantomassi, Yannick Gillet, Olivier
Gingras, Donald R. Hamann, Geoffroy Hautier, Xu He, Nicole Helbig, Natalie
Holzwarth, Yongchao Jia, François Jollet, William Lafargue-Dit-Hauret, Kurt Le-
jaeghere, Miguel A.L. Marques, Alexandre Martin, Cyril Martins, Henrique P.C.
Miranda, Francesco Naccarato, Kristin Persson, Guido Petretto, Valentin Planes,
Yann Pouillon, Sergei Prokhorenko, Fabio Ricci, Gian-Marco Rignanese, Aldo H.
Romero, Michael Marcus Schmitt, Marc Torrent, Michiel J. van Setten, Benoit
Van Troeye, Matthieu J. Verstraete, Gilles Zérah, and Josef W. Zwanziger. The
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