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Abstract

In this project we present a theoretical model of interaction between a short wavelenght X-ray
beam and a sample of atoms. Exploiting an existent population inversion in the sample, we
want to show that the field intensity is enhanced by the interaction with matter. We provide
insights on the most relevant theoretical concepts that are needed for the problem and a
numerical scheme to solve the equations. Then, we show results of the simulations, comparing
them with known analytics and previous simulations.
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Introduction

Since the invention of the first optical laser by Maiman in 1960 [1], people have been trying to
create devices that could generate coherent X-ray beams with very short wavelenghts. Indeeed,
the shorter the wavelenght, the shorter the pulse duration and the better the imaging. Nowadays,
great advances in the field of X-ray free-electron lasers (XFELs) have made it possible to generate
hard X-rays (e.g. the energy of the photons is of the order of the kiloelectronvolt) in an angstrom-
wavelenght regime.
While traditional lasers usually exploit an inverted population in the atomic levels of matter in
order to generate a coherent beam of light, XFELs [2][3][4] use a high energy electron beam as the
generating medium. These electons go through an array of magnets arranged one next to the other
with opposite polarity, and hence they start to oscillate in space: since electrons are electrically
charged particles, these fast accelerations induce the emission of photons in the keV regime. The
resulting X-ray beam lasts only a few femtoseconds and have a brightness a billion times greater than
the radiation produced by conventional synchrotron light sources[5]. XFELs operate on the principle
of self-amplified spontaneous emission (SASE), where the radiation emitted by the electron is further
amplified by interaction with the electron beam [5]. This result in intense, short-wavelenght laser
bursts that are coherent in a plane transverse to the direction of propagation.
In 2015, Yoneda[6] and his colleagues have demonstrated an atomic X-ray laser that has a well
defined wavelenght of 1, 54Å, the shortest wavelenght ever, surpassing by a factor 10 an atomic
laser that was demonstrated to work at 14, 6Å[7]. However, a theoretical model that fully explains
the interaction between this laser beam and matter is still missing.
Finally, the aim of this project was to understand a possible theoretical model that describes the
propagation and interaction with matter of such a laser beam in three dimensions, and to conduct
numerical simulations of these phenomenon. This required the creation of a code to benchmark the
results of an already existing code, made by S. Chuchurka, and to produce further simulations. The
project was conducted under the supervision of researcher A. Benediktovitch and PhD candidate S.
Chuchurka, both working in the FS-TUX group at Desy in Hamburg, whose leader is N. Rohringer.

1 Theoretical insights

1.1 The paraxial wave equation

A fundamental framework for this project has been the paraxial apporximation. Indeed, numerical
simulations are, for our purposes, limited to this approximation, which present an analytical solution
for the propagation case. In particular, let’s first derive the paraxial wave equation: electric fields
in free space are governed by the scalar wave equation:[

4+ k2]E(x, y, z) = 0 (1)

where the 4 symbol corresonds to the Laplacian operator, e.g. ∇ · ∇, and E(x, y, z) is the phasor
amplitude of a field that evolves sinusoidally in space; its primary space dependence will then be
exp(−ikz), where k is the wave vector and assuming z as the propagation direction. It is convenient
to extract the exp(−ikz) propagation factor and write the field as follows:

E(x, y, z) := u(x, y, z) exp(−ikz) (2)

where u(x, y, z) is then the envelope of the field. Rewriting eq. (1) with this decomposition, one
gets:

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− 2ik

∂u

∂z
= 0 . (3)
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Since the main space dependence in z is represented by the factor exp(−ikz), the remaining z-
dependence is cause by diffraction effects, and will be slow compared to transverse variations[8].
Thus, the second derivative in z can be ignored by performing the paraxial approximation :∣∣∣∂2u

∂z2

∣∣∣� ∣∣∣2ik∂u
∂z

∣∣∣ or
∣∣∣∂2u

∂x2

∣∣∣ or
∣∣∣∂2u

∂y2

∣∣∣ . (4)

Rewriting eq. (3) we finally get to the paraxial wave equation:

4tu(s, z)− 2ik
∂u(s, z)

∂z
= 0 (5)

where 4t represents the Laplacian operator respect to the transverse coordinates s = (x, y) or
s = (r, θ).

1.2 Gaussian beam solution

Equation eq. (5) has an analytical solution, the gaussian beam[8]:

u(x, y, z) =

√
2

π

exp(−ikz − iψ(z)

w(z)
exp

[
− x2 + y2

w2(z)
− ikx

2 + y2

2R(z)

]
(6)

where w(z) is the beam waist at the plane z, R(z) is the beam radius, ψ(z) is the Guoy phase and
zR is Reyleigh lenght:

zR =
πw2

0

λ

w(z) = w0

√[
1 +

( z
zR

)]
R(z) = z +

z2
R

z

ψ(z) = tan−1
( z
zR

)
.

(7)

where w0 is the beam waist at the source plane and λ is the wavelenght of th efield in the propagation
medium.

1.3 Decomposition in Bessel’s functions

In the project, we assume the interaction to happen in a 3D cilinder of lenght L and radius R.
The light beam was decoupled through Bessel’s functions, which represent eigenfunctions of the
Laplacian operator. In particular, we consider Bessel’s functions Jk(r) as:

Jk(r) :=
J̃0( r

R
µk)√

πR|J̃1(µk)|
(8)

where J̃0 and J̃1 are the usual first and second Bessel’s functions, µk is the node of order k and
r =

√
x2 + y2 is the usual radial coordinate in the plane. Since our Jk’s are all of type 0, we are

assuming no angular dependance for the problem, i.e. cilindrical symmetry. Then, if we fix R for
the box and an initial waist w0 for our field, we can decouple the beam u(r, z) of eq. (6) with Bessel’s
functions. Basically, we need to obtain Bessel’s coefficients ck for the field through a scalar product

ck(z) =

∫ R

0

dr 2πr Jk(r) · u(r, z) (9)
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and then obtain the simulated beam from

u(r, z) =
∑
k

ck(z) · Jk(r) . (10)

Of course if we increase the number of Bessel’s function taken into considerations the precision with
which we can mimic the shape of the target field improves, as shown in figs. 1 and 2.
Moreover, with our definition of Bessel’s functions, expoliting the fact that for usual Bessel’s func-
tions stands true that: ∫ 1

0

dx J̃0(xµk) · J̃0(xµn) = δk,n

4J̃0(
r

R
µk) = −

(µk
R

)2

J̃0(
r

R
µk)

(11)

then from eq. (11) follows that:∫ R

0

dr Jk(r) · Jn(r) = δk,n∫ R

0

dr Jk(r)4Jn(r) = k2
0 Kk δk,n, Kk = − µ2

k

R2k2
0

(12)

where k0 is the wave vector of the field.
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Figure 1: Approaching of the simulated beam to the target beam with increasing number of Bessel’s
functions for ratio radius of box/beam waist = 2.5. Real (top left) and imaginary (top
right) part and difference between the simulated and target beam for the real (bottom
left) and imaginary (bottom right) part.
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Figure 2: Approaching of the simulated beam to the target beam with increasing number of Bessel’s
functions for ratio radius of box/beam waist = 25. Real (top left) and imaginary (top
right) part and difference between the simulated and target beam for the real (bottom
left) and imaginary (bottom right) part.
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1.4 Field-matter equations

For our task, we need to solve the Maxwell equations for the electric field in the presence of matter.
As a starting point, we can write the field as a sum of field components with positive and negative
frequency, i.e.

D(r, t) = D(+)(r, t) +D(−)(r, t) (13)

Moreover, it is convenient to express the field in terms of Rabi frequency

Ω(±)(r, t) = ±id0 ·D(±)((r, t)

ε0~
, (14)

where d0 ≡ deg is the element (e, g) of the dipole operator matrix d̂ = −q · r̂ for a two level system,
q being the elementary charge. In this way, the field has physical units of frequency. The solution
in terms of Bessel’s components is:

Ω(+)(r, t) =
∑
k

(
Ω

(+)
k,>(z, t)eik0z + Ω

(+)
k,<(z, t)e−ik0z

)
e−iω0t Jk(r, t)

Ω(−)(r, t) =
∑
k

(
Ω

(−)
k,>(z, t)eik0z + Ω

(−)
k,<(z, t)e−ik0z

)
eiω0t Jk(r, t) (15)

where Ω
(±)
k,> represent the k-th Bessel component moving forward, while Ω

(±)
k,< is the k-th Bessel

component moving backward (for positive and negative frequency), and where we have taken out
the exp(±ik0z ± iω0t) dependency of the field, k0 and ω0 being the wave vector and the frequency.
On the other hand, interaction with matter is modelled through the Maxwell-Bloch equations. In
particular, being ρ(r, t) the density martix of the atom at position r at time t, and neglecting
spontaneous decay effects, the equations for the components of the matrix are[9]:

dρpq(r, t)

dt
= −i(ωp − ωq)ρpq(r, t)

+ Ω(r, t)
∑
s

(
dpsρsq(r, t)− ρps(r, t)dsq

)
, (16)

While we are going to solve these equations for the energy levels in real space-time coordinates, it
is useful to state that also the density matrix can be expressed in terms of Bessel’s functions, just
as usual:

ρk,pq(z, t) =

∫ R

0

dr 2πr Jk(r) · ρpq(z, t)

ρpq(z, t) =
∑
k

ρk,pq(z, t) · Jk(r) .
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Considering a two-level system and applying the rotating wave approximation to eq. (15), one finds
the equations for the evolution of the density matrix in real coordinate space:

∂ρee(z, t)

∂t
= −

[
Ω

(+)
> (z, t)degρge(z, t) + fTΩ

(−)
> (z, t)ρeg(z, t)dge+

+ f ∗T ∗Ω
(+)
< (z, t)degρge(z, t) + Ω

(−)
< (z, t)ρeg(z, t)dge

]
, (17)

∂ρeg(z, t)

∂t
=− i(ωe − ωg)ρeg(z, t)+

−
(

Ω
(+)
> (z, t) + +f ∗T ∗Ω

(+)
< (z, t)

)(
degρgg(z, t)− ρee(z, t)deg

)
, (18)

∂ρge(z, t)

∂t
=− i(ωe − ωg)ρeg(z, t)+

+
(
fTΩ

(−)
> (z, t) + Ω

(−)
< (z, t)

)(
dgeρee(z, t)− ρgg(z, t)dge

)
, (19)

∂ρgg(z, t)

∂t
=

[
fTΩ

(−)
> (z, t)dgeρeg(z, t) + Ω

(+)
> (z, t)ρge(z, t)deg+

+ Ω
(−)
< (z, t)dgeρeg(z, t) + f ∗T ∗Ω

(+)
< (z, t)ρge(z, t)deg

]
. (20)

We note that in our problem we consider ρeg = ρ̃eg exp
[
− i(ωe − ωg)

]
, so we can forget about the

first term in eqs. (18) and (19).
Regarding the field equations, we follow the same path that was illustrated in section 1.1, only this
time we are not in vaccum aanymore. We apply once again the paraxial approximation and we
use the retarded time frame, i.e. we make the following change of variables: z → z − ct, with
c the speed of light. Finally, the following set of equations describes the evolution of the Bessel
components of the field Ωk, taking into account the interaction with matter, represented by the
Bessel components of the density matrix ρk,pq:

∂Ω
(+)
k,>(z, t)

∂z
= i

k0

2

(
KkΩ

(+)
k,>(z, t) + χ(0)Ω

(+)
k,>(z, t) + χ(−)Ω

(+)
k,<(z, t)

)
+

+
3λ2

0

8π
nΓsp dge · ρk,eg(z, t) , (21)

−
∂Ω

(+)
k,<(z, t)

∂z
+ 2

∂Ω
(+)
k,<(z, t)

c ∂t
= i

k0

2

(
KkΩ

(+)
k,<(z, t) + χ(0)Ω

(+)
k,<(z, t) + χ(+)Ω

(+)
k,>(z, t)

)
+

+
3λ2

0

8π
nΓsp dge · ρk,eg(z, t) , (22)
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∂Ω
(−)
k,>(z, t)

∂z
= −ik0

2

(
KkΩ

(−)
k,>(z, t) + χ(0)∗Ω

(−)
k,>(z, t) + χ(−)∗Ω

(−)
k,<(z, t)

)
+

+
3λ2

0

8π
nΓsp deg · ρk,ge(z, t) , (23)

∂Ω
(−)
k,<(z, t)

∂z
− 2

∂Ω
(−)
k,<(z, t)

c ∂t
= i

k0

2

(
KkΩ

(−)
k,<(z, t) + χ(0)∗Ω

(−)
k,<(z, t) + χ(+)∗Ω

(−)
k,>(z, t)

)
+

− 3λ2
0

8π
nΓsp deg · ρk,ge(z, t) . (24)

We note that n is the atomic density, Γsp is the spotaneous decay constant and the χ’s are the
susceptibilities of the medium.

2 Simulations

2.1 Forward propagation

As a firts step in the project we checked if this method of decomposition into Bessel functions
could efficiently simulate the propagation of the beam. So, we limited ourself to the propagation in
vacuum of the forward propagating wave. The equation taken into account was:

∂Ω
(+)
k,>(z)

∂z
= i

k0

2

(
KkΩ

(+)
k,>(z)

)
, (25)

which is just the first part of eq. (21). For this equation there is a known analytical solution[8],
i.e. the gaussian beam solution decribed in section 1.2. All we have to do is solve eq. (25) for each

Bessel component k and then recover the field by summing over all k’s the product of Ω
(+)
k,>(z) with

Jk(r, z). In figs. 3 and 4 we show the result of the simulation and the known Gaussian solution
for both the module and the phase, and we compare the two simulations. One can see that the
difference between the two beams is everywhere in space compatible with zero.
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Figure 3: Module of simulated field (left), of the analytical solution (centre), and difference between
the two (left).

10



−8 −6 −4 −2 0 2 4 6 8

r

0.5

1.0

1.5

2.0

2.5

3.0

z

Bessel

−1.6

−1.2

−0.8

−0.4

0.0

0.4

0.8

1.2

1.6

−8 −6 −4 −2 0 2 4 6 8

r

0.5

1.0

1.5

2.0

2.5

3.0

z

Analytical Gaussian beam

−1.6

−1.2

−0.8

−0.4

0.0

0.4

0.8

1.2

1.6

−8 −6 −4 −2 0 2 4 6 8

r

0.5

1.0

1.5

2.0

2.5

3.0

z

Bessel - Analytical Gaussian beam

−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

Figure 4: Phase of simulated field (left), of the analytical solution (centre), and difference between
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2.2 Forward and backward propagation

As a next step, we added the simulatoin of the backward propagating wave, i.e. the Ωk,< compo-
nents. Thus, we needed to numerically solve the following system of coupled equations:

∂Ω
(+)
k,>(z, t)

∂z
=i
k0

2

(
KkΩ

(+)
k,>(z, t) + χ(0)Ω

(+)
k,>(z, t) + χ(−)Ω

(+)
k,<(z, t)

)
, (26)

−
∂Ω

(+)
k,<(z, t)

∂z
+ 2

∂Ω
(+)
k,<(z, t)

c ∂t
=i
k0

2

(
KkΩ

(+)
k,<(z, t) + χ(0)Ω

(+)
k,<(z, t) + χ(+)Ω

(+)
k,>(z, t)

)
. (27)

We will explain better the scheme for solving these equations in the next section. For now, we limit
ourselves to showing results of the simulations. In particular, we compare them with a code written
in Julia by S. Chuchurka, and we make sure that they are compatible, as shown in figs. 5 and 6.

2.3 Light-matter interaction

As a final step, we added the interaction between light and matter. To do so, we implemented
the full system of eqs. (21), (22), (23) and (24) for the field propagation and the Maxwell-Bloch
system of eqs. (17), (18), (19) and (20). Since the equations for the field include partial differential
equations, it is useful to describe the numerical scheme that was implemented to solve the system.
First of all we set a grid of points in space and time, i.e. a 2D grid of (z, t) points, equally separated
in space by ∆z and in time by ∆t = 2

c
∆z. The reason for this choice of ∆t will become evident in

a moment.
For eqs. (21) and (23) nothing special happens, they are ordinary differential equations. We simply

interpret the derivative as a finite difference, i.e.
∂Ω

(+)
k,>(z,t)

∂z
' Ω

(+)
k,>(z+∆z,t)−Ω

(+)
k,>(z,t)

∆z
while we interpret

the field at point (z, t) as an average, i.e. Ω
(+)
k,>(z, t) ' Ω

(+)
k,>(z+∆z,t)+Ω

(+)
k,>(z,t)

2
, and we do the same

for the density matrix, ρpq(z, t) ' ρpq(z+∆z,t)+ρpq(z,t)

2
. So, given a particular field at point (z, t), the
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Figure 5: Module of of the simulation of the forward wave with the Julia code (left), with the
Bessel code simulation (centre), and difference between the two (left).
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Figure 6: Module of of the simulation of the backward wave with the Julia code (left), with the
Bessel code simulation (centre), and difference between the two (left).

numerical approximation for Ω
(+)
k,>(z + ∆z, t) is:

Ω
(+)
k,>(z + ∆z, t) =

Ω
(+)
k,>(z, t)

[
1 + ik0

4
∆z(Kk + χ0)

]
+ ik0

4
χ(−)∆z

[
Ω

(+)
k,<(z + ∆z, t) + Ω

(+)
k,<(z, t))

]
1− ik0

4
∆z(Kk + χ0)

+

+

3λ20
8π
n∆z

[
ρeg(z + ∆z, t) + ρeg(z, t)

]
1− ik0

4
∆z(Kk + χ0)

. (28)

With these scheme, we achieve second order precision in ∆z. As one can see from eq. (28), the
algorithm predicts Ωk(z+∆z, t) if we know Ωk(z, t) for all times t. This is fine for our purpose since
we know the shape of the incoming field, in particular we initially assume a gaussian beam for all
times t at z = 0. Of course, everything said for eq. (21) is true for eq. (23). With the necessary
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modifications, one gets:

Ω
(−)
k,<(z + ∆z, t) =

Ω
(−)
k,<(z, t)

[
1− ik0

4
∆z(Kk + χ0∗)

]
+ ik0

4
χ(−)∆z

[
Ω

(−)
k,>(z + ∆z, t) + Ω

(−)
k,>(z, t))

]
1 + ik0

4
∆z(Kk + χ0∗)

+

+

3λ20
8π
nΓsp∆z

[
ρeg(z + ∆z, t) + ρeg(z, t)

]
1 + ik0

4
∆z(Kk + χ0)

. (29)

We observe that Ω
(+)
k,> and Ω

(−)
k,< are simply complex conjugate of one another.

For the partial differential equations of eqs. (22) and (24) we proced as follows. We first interpret
the time derivative as a finite difference:

∂Ω
(+)
k,<(z, t)

∂t
'

Ω
(+)
k,<(z, t+ ∆t)− Ω

(+)
k,<(z, t)

∆t
, (30)

and we do the same for the spatial derivative. So, eq. (22) becomes:

Ω
(+)
k,<(z, t+ ∆t)− Ω

(+)
k,<(z, t)

∆t
=
c

2

[
Ω

(+)
k,>(z + ∆z, t)− Ω

(+)
k,>(z, t)

∆z
+

+ i
k0

2

(
KkΩ

(+)
k,<(z, t) + χ(0)Ω

(+)
k,<(z, t) + χ(+)Ω

(+)
k,>(z, t)

)
+

3λ2
0

8π
nΓsp dge · ρk,eg(z, t)

]
, (31)

and one gets:

Ω
(+)
k,<(z, t+ ∆t) = Ω

(+)
k,<(z, t) +

=∆z︷︸︸︷
∆t

c

2

[
Ω

(+)
k,>(z + ∆z, t)− Ω

(+)
k,>(z, t)

∆z
+

+ i
k0

2

(
KkΩ

(+)
k,<(z, t) + χ(0)Ω

(+)
k,<(z, t) + χ(+)Ω

(+)
k,>(z, t)

)
+

3λ2
0

8π
nΓsp dge · ρk,eg(z, t)

]
.

Using the equivalence c
2
∆t = ∆z and evaluating the fields Ω and ρ at z+ ∆z, the scheme simplifies

to:

=⇒ Ω
(+)
k,<(z, t+ ∆t) = Ω

(+)
k,<(z + ∆z, t) + ∆z

[
3λ2

0

8π
nΓsp dge · ρk,eg(z + ∆z, t)+

i
k0

2

(
KkΩ

(+)
k,<(z + ∆z, t) + χ(0)Ω

(+)
k,<(z + ∆z, t) + χ(+)Ω

(+)
k,>(z + ∆z, t)

)]
. (32)

As can be seen from eq. (33), to evolve the field from time t to time t + ∆t we need to know the
field at time t and at position z+ ∆z. This is possible because, in our problem, we assume that the
backward propagating wave is zero at time t = 0 for every z, so at time 0 + ∆t we can safely use
the algorithm. In fig. 7 we show a visual representation of how we are solving the problem, with
the backward wave evolving from (z + ∆z, t) to (z, t+ ∆t).
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Figure 7: Schematic representation of the grid used for solving the propagation in time and space of
the forward (left), the backward (center) propagating wave and the density matrix (left).

For Ω
(−)
k,>(z, t) we get:

Ω
(−)
k,>(z, t+ ∆t) =Ω

(−)
k,>(z + ∆z, t) + ∆z

[
3λ2

0

8π
n deg · ρk,ge(z + ∆z, t)+

i
k0

2

(
KkΩ

(−)
k,>(z + ∆z, t) + χ(0)∗Ω

(−)
k,>(z + ∆z, t) + χ(+)∗Ω

(−)
k,<(z + ∆z, t)

)]
. (33)

Regarding the Maxwell-Bloch equations (see eqs. (17), (18), (19) and (20)) a simple Euler scheme
was used.

2.4 Results of the full simulation and comments

For the final simulation of light-matter interaction, we chose an initial field shaped like a Gaussian
in space and time, of the form:

u(r, z, t) = u0 ·
√

1

2π

ei ψ(z)

w(z)
e
− r2

2w(z)2
−i k0 r2

2R(z)
1√

2πσ2
t

e
− (t−t0)2

2σ2t , (34)

where the definitions of ψ(z) , w(z) and R(z) were given in section 1.2. Moreover, we set an initial
population inversion of 1% at time t = 0, i.e. we set ρee(r, z, t = 0) = 0, 01 for all (r, z) points of
the grid. In this way we expect the field to be amplified by the population inversion. For more
information about the parameters of the beam, see section 2.5.
In this section we show the results of the simulation. In particular we show sections of the plane
(r, z) for different times t in figs. 8, 9 and 10.
As we can see in figs. 8, 9 and 10, through the interaction with the field the coherences ρeg start to
grow and lead to an increase in the intensity of the field, whose peak is dragged in time towards the
end of the box. This evolution in time can be displayed in (z, ct) plots, which are shown in figs. 11,
12, 13 and 14.
If we focus our attention to the r = 0, 0 plots (the top left ones) we see that the population inver-
sion, which is present everywhere in space at time t = 0 (see fig. 14), causes an increase in the field
intensity between times t = 0 and t ' 2, 5. This increase of the field then results in a depopulation
of the excited level. Then at time t ' 5 the intensity of the initial field start to grow, leading to
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a peak of intensity, which is dragged to the end of the sample, as we can see in fig. 11. In the
retarded time scheme that we are using, this results in a straight intensity peak at the centre of the
box, which then fades due to absorbtion by the atoms. Finally, if we look at the density matrix
elements in figs. 13 and 14 we see that they undergo Rabi oscillations in time, which means that
the population levels oscillate in time due to the interaction with the field.
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Figure 8: Representation in the (r, z) plane, at time t = 16.0 fs of: module of the forward propagat-
ing wave (top left), of the backward propagating wave (top right), of the density matrix
elements ρee (bottom left) and ρeg (bottom right).
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Figure 9: Representation in the (r, z) plane, at time t = 18.0 fs of: module of the forward propagat-
ing wave (top left), of the backward propagating wave (top right), of the density matrix
elements ρee (bottom left) and ρeg (bottom right).
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Figure 10: Representation in the (r, z) plane, at time t = 20.0 fs of: module of the forward prop-
agating wave (top left), of the backward propagating wave (top right), of the density
matrix elements ρee (bottom left) and ρeg (bottom right).
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Figure 11: Representation in the (z, t) plane of the module of the forward propagating wave for:
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Figure 15: (z, t) plot of forward (left) and backward (right) propagating wave in the time reference
of the laboratory. We add a red lines z = ±ct to show that the two waves propagate as
they should.

As a final check, we plot the forward and backward wave evolution also in the time lab, to verify
that they move accordingly to the law z = ct and z = −ct respectively. As one can see in ??,
the peaks of the forward propagating wave move along the z = ct line, and those of the backward
wave along the z = −ct line. Moreover, one can see that the sources that generate the backward
propagating wave are along the z = ct, since they are created by the forward propagating field.
Unfortunately, when using the algorithm for longer time the field and the density matrix elements
grow indefinetely and after some time they lead to overflow, indicating some flaw in the method of
the decomposition in Bessel functions, or in the algorithm itself. Moreover, the decomposition of
the density matrix in Bessel functions becomes less and less accurate as time passes.

2.5 Parameters

Here we list the parameters used for the final simulations (showed in section 2.3):

• Width of the box: R = 0, 5µm,

• Length of the box: L = 10, 0µm,

• Time of the simulation: T = 33, 3fs,

• Step of the grid in space: ∆z = 0, 01µm,

• Step of the grid in time: ∆t = 2/c∆z,

• Initial beam intensity: I0 = 0, 001µJ,

• Initial beam waist: w0 = 0, 02µm,

• Time of beam peak: t0 = 16, 65 fs,
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• Width of beam in time: σt = 8, 325 fs,

• Beam wavelenght: λ0 = 1, 54 Å,

• Number of Bessel functions: nBessel = 25,

• Spontaneous decay constant: Γsp = 1/(0, 92) fs−1,

• Atomic density: n = 1, 0 nm−3,

• Susceptibility: χ(0) = (−37.3763 + 1.66806 i) 10−7

• Susceptibility: χ(+) = (−6.97952 + 5.07316 i) 10−7

• Susceptibility: χ(−) = (−7.70248− 4.20542 i) 10−7

• Initial population inversion: ρee(t = 0) = 0, 01

3 Conclusions and future developments

In conclusion, the code gives correct results in terms of the propagation of the beam. The predic-
tions have been cross-checked multiple times both with known analytics and with another code.
Regarding the light-matter interaction part, the results of the simulations are coherent and trust-
worthy, and show all the features that we were looking for, in particular the amplification of the
field intensity. However, the code fails for long simulation times (more than ' 40 fs), so this should
raise some concern about the stability of the algorithm. One suggestion for the future could be to
try and implement a more stable numerical scheme. Moreover, to get a more complete and realistic
simulation it would be appropriate to implement a pump-probe scheme in which an initial beam
acts as a pump and creates a population inversion, which is then probed by the Gaussian field that
was implemented in the code.
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