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Abstract

Tagging leptonically decaying boosted top quarks have not been much explored us-
ing jet image based techniques, as of yet. In this project, we investigate the use of Ma-
chine Learning techniques (based on Convolution Neural Network, called ResNeXt50)
to tag leptonically decaying boosted top quarks in CMS. The results of classification of
the leptonic top jets against the background look promising, for instance the misclas-
sification probability of 10−2 (∼ 2 ·10−4) is achieved for hadronic top quark jets (light
quark and gluon jets) as the background. This can have very interesting implications
for a variety of new physics models which have boosted top quarks in their final state.



2 METHODOLOGY 2

Contents

1 Introduction 2

2 Methodology 2

3 Results 6

4 Conclusions 11

1 Introduction

Top quark plays an important role in the Standard Model of Particle Physics, for instance
it is the heaviest particle and has large contribution to the Higgs mass loop correction.
Furthermore, several promising Beyond Standard Model (BSM) physics models have very
energetic top quarks in their final states. So far, low and moderate energy phase spaces of
various BSM models are excluded by ATLAS and CMS searches [1].

Very heavy BSM particles (with mass ∼TeV) can produce highly boosted top quarks,
which decay products are highly collimated and as a result, produce a single „fat” jet,
instead of multiple jets. Hence, there is a great need to explore the tagging of boosted top
quarks, especially using various Machine Learning (ML) techniques, which proven to be
much more effective in classification of signal and background categories, than normal cut
based analyses [2, 3]. Boosted hadronic top quark tagging have been well studied using
various ML techniques but there is still a demand for a thorough studies on boosted leptonic
top quark tagging, which has not been well explored yet. Analysing highly boosted cases
can be quite challenging, due to overlapping of the b quark and lepton [1]. In this project
we employ Convolutional Neural Network (CNN) to tag leptonically decaying boosted top
quarks, using their jet images.

The report is organized as follows. The methodology with the describtion of used ML
techniques is disscussed in Sec. 2, results of the trainings are included in Sec. 3, and finally
the summary and further outlook are presented in Sec. 4.

2 Methodology

Top quark jets are generated from boosted top-pair events (HT binned samples) and from
Z ′ → tt events, where Z ′ masses are equal to 1, 1.25, 1.5, 2 and 3 TeV. Dataset also
includes light quark and gluon jets (udsg jets), which are generated from QCD events (pT
binned sample).

For the jet reconstruction anti-kT [4, 5] jet algorithm is used. The radius parameter is
adjusted to R = 1.5 (hereon we refer those jets as AK15). If the jet axis is inside the cone
of ∆R =

√
∆y2 + ∆φ2 < 1.0, around a resultant momentum of the generator-level visible

decay products of a leptonically (hadronically) decaying top quark, the reconstructed fat-
jets are further classified as a leptonic or a hadronic top. Here, ∆y and ∆φ refer to rapidity
and azimuthal angle differences, respectively. Cuts applied on jets’ transverse momenta
and pseudorapidity are pT > 200 GeV and |η| < 2.4.
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In order to improve the classification performance, jet images are firstly preprocessed
using a certain transformations, which are described in [6] in detail. Following the method-
ology, momentum of the jet is rescaled and boosted to a frame where its new mass is fixed
to a specific value mB and the energy is a costant value EB. As a result, the boost factor
given as γB = EB/mB does not depend on a initial momentum of a jet. In this study,
we assume γB = 2, ensuring that the model is applicable to a wide range of top quark
energies and the jet images are uniform and similar. In order to have an image plane that
is perpendicular to the jet axis and ensure that the two subjets with highest energies lie
along the x-axis of a image plane, a Gram-Schmidt transformation is used.
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Figure 1: Images of leptonic top jets from tt events with two selected Z ′ masses and their
comparison with the usual pT − η rotation (on the bottom).

The applied procedure makes the results more reliable across a wide range of energy.
An example of leptonic top jets from tt events and their comparison with the pT − η
rotation are presented in Fig. 1. Generally, each image (layer) is a 50 x 50 histogram. The
quantity on the color axis depends on the type of layer being considered. In this study,
energy fraction layers and secondary vertex layers are used. The fomer corresponds to
jet energy for each type of jet constituents: electron candidate, muon candidate, photon
candidate, charged and neutral hadron candidate. The latter refers to the transverse
impact parameter (normalized) of a charged constituent track from the nearest secondary
vertex within the jet and takes into account only charged constituent types [1, 6]. The
selected energy fraction layer images for four exemplary components (electron, gamma and
hadrons) are presented in Fig. 2 on page 4.
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Figure 2: In the left column: images of hadronic top jets, in the middle: leptonic top jets,
in the right column: QCD jets. Figures a) - c) correspond to the electron component, d) -

f): gamma component, g) - i): neutral hadron component, j) - l): charge hadron
component.
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In our model three types (categories) of jets are considered: (i) leptonic top jets, (ii)
hadronic top jets, (iii) light quark and gluon jets (udsg jets). The first class is our signal
and the rest constitute to a two types of the background. The number of jets of each
category used for training and validation is listed in table 1.

Table 1: Statistics used for training and validation.

category training validation
0: leptonic top 2.1M 480K
1: hadronic top 2.9M 540K
2: QCD 3.0M 790K

The used network is based on the class of techniques called Convolution Neural Net-
works (CNN). In CNN routines, for classifying M×N images, one need to reduce the M×N
dimensional space to one (or a few) dimension. Typically, it involves a series of opearations,
namely convolution and subsampling. Within a convolution step, the image is convolved
with a certain matrix (called a kernel) to extract certain features. During CNN training,
kernels are updated after every iteration (epoch). As a result of subsampling (called also
as downsampling), the number of dimensions of the feature map is reduced [7].

In this study, we propose one of the modern CNN techniques called Aggregated Resid-
ual Neural Network (ResNeXt50) [8]. It is a straightforward, highly modularized network
architecture, used for image classification. The main idea is to repeat the building block
that aggregates a set of transformations with the same topology. As a result, a homo-
geneous, multi-branch architecture is obtained, with only a few hyperparameters to set.
ResNeXt50 routines requires an implementation of a new dimension called „cardinality”,
which is the size of the set of transformations. Apart from dimensions of depth and width,
it is a essential factor. The quantity that is minimized by the network is the cross-entropy
loss. Architecture in three equivalent forms is presented in Fig. 3 [7, 8].

Output of the network is a multiclassifier with three nodes, corresponding to the three
classes of jets. The full network is designed for larger images and about 1 000 categories.
Since our problem is much simpler, a scaled down version of the network has been used
with about 1.5M trainable parameters instead of the full ∼25M parameter network, de-
scribed in [8]. Network implementation was adapted from [9]. TensorFlow v2.5 with Keras
backend was used, implemented in Python. Moreover, the implementation was done using
Adam [10] gradient descent with a lerning rate (LR) of xyz value and a batch size of 2K.

Figure 3: Equivalent building blocks of ResNeXt. Bolded text highlight the reformulation
changes. A layer is denoted as (input channels, filter size, output channels) [8].
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3 Results

The training was run with ResNeXt50 network, using two versions – the first one included
energy fraction layers and the second one included both energy fraction and secondary
vertex layers. Since ResNeXt50 performance is better with smaller learning rates, it was
accordingly adjusted and equal 10−4. The results of the training and validation for the
first 24 epochs are presented in Fig. 4 as loss and accuracy curves. There is no significant
overtraining but both models become unstable after epoch number 9. At that step the
values of epoch accuracy and loss take the best values equal 0.84 and 0.44, respectively.
As far as batch functions are concerned, validation results for both models have significant
fluctuations after 10K. The fluctuation after epoch 9 can likely be mitigated by switching
to a lower LR at that point, however the result is not likely to improve further by doing
so as it has been studied that the batch loss and accuracy reach a plateau by epoch 9.

(a) (b)

Figure 4: a): Epoch accuracy and b): epoch loss. Grey and orange curves denote training
and validation for all layers (including secondary vertex layers), red and blue curve

denote training and validation for energy fraction layers only.

Distributions of the output at node 0 (corresponding to the class 0, which is the signal)
for three categories are presented in Fig. 5 and 6 on pages 7 and 8. The y-axis corresponds
to the number of the following epochs. As expected, for category 0 the functions are close
to 1, while for the categories 1 and 2 the output gets close to 0. This clearly indicates that
the classifier assigns the jets to the correct cattegories.

Receiver operating characteristic (ROC curves) at epoch number 9 of category 0 versus
category 1 are presented in Fig. 7 on page 9. The efficiency of classification is significantly
better in the region of low efficiences and the performance is very similar for both all layers
and only energy fraction layers. For efficiency of classification of category 0 of 60%, the
reduction of background is at the level of 10−2.

ROC curves at epoch number 9 of category 0 versus category 2 are presented in Fig. 8
on page 10. The performance is slightly worse, for instance for the efficiency of classification
of category 0 of 60%, the reduction of the background is at the level of ∼ 2 · 10−4. Both
models give similar results of classification.
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(a)

(b)

(c)

Figure 5: Distribution of the output for node 0 (which refers to the signal), for energy
fraction layers. On the left there are results of the training, on the right – results of

validation. a): classification of category 0, b): classification of category 1,
c): classification of category 2.
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(a)

(b)

(c)

Figure 6: Distribution of the output for node 0 (which refers to the signal), for all layers.
On the left there are results of the training, on the right – results of validation.

a): classification of category 0, b): classification of category 1, c): classification of
category 2.
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(a)

(b)

Figure 7: Receiver operating characteristic (ROC curves) for category 0 against category
1 for a): energy fraction layers and b): all layers. Results of training are presented on the

left, results of validation – on the right.
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(a)

(b)

Figure 8: Receiver operating characteristic (ROC curves) for category 0 against category
2 for a): energy fraction layers and b): all layers. Results of training are presented on the

left, results of validation – on the right.
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The next two plots in Fig. 9 present the Area Under the ROC Curves (AUC) for
category 0 versus category 1 as well as category 2. AUC curve represents the capability
of the model of distinguishing between classes. The performance is the best at epoch
9 as it was mentioned before. Results for both trainings and validations at step 9 are
similar, however the validation results corresponding to all layers give greater value as far
as classification of class 0 against class 2 is concerned (0.965 versus 0.955). In Fig. 9(a),
the results of validation at epoch 9 take the values of ∼0.945.

(a) (b)

Figure 9: Area Under the ROC Curves (AUC) for a): category 0 against category 1 and
b): category 0 against category 2.

4 Conclusions

The project includes analysis of boosted top tagging performances in leptonic channels
using jet images. The ResNeXt50 network is able to properly classify leptonic top jets
against a hadronic top and light flavour QCD background. The plots of ROC curves have
been taken from the epoch number 9, as at that step the values of epoch accuracy and loss
reach the best values, namely 0.84 and 0.44. The ROC curves show that for the 60% of
signal efficiency the level of background is at ∼ 10−2 for hadronic top jets and ∼ 2 · 10−4

for QCD (for both all layers as well as energy fraction layers only). Hence, the results look
promising.

As far as advantages of the proposed method are concerned, it should be noted that
conventional methods usually require a very well identified lepton, which can be very
challenging to do in highly boosted cases where the b quark jet and the lepton start
overlapping. The CNN based technique does not rely on very precise lepton reconstruction
and identification.

Possible future plans for in-depth studies are as following. A general multiclassifier
should be changed to a custom classifier for specific signal and background types only.
Moreover, it is worth checking how does the performance of the training behave in different
bins of top quark pT and also include other backgrounds, for instance leptonically and
hadronically decaying W/Z bosons. Finally, it is necessary to compare presented results
with conventional (non ML based) methods.
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