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Abstract

CP-violation in the Higgs sector remains a possible source of the baryon-asymmetry in the
universe. The aim of the project is to uncover the Higgs CP nature in CMS using machine
learning techniques and compare our boosted decision tree (BDT) model with the previously
used neural network (NN) one. I used data and simulation of proton-proton collision at the
LHC during 2018 (HTT data).  After  data pre-processing  and training the model  with  the
features  used  in  the  published  analysis,  I  tuned  some hyperparameters  to  get  the  best
model,  and  then  I  added  extra  input  features  to  improve  the  model.  The  expected
significance for the H→ττ process shows that the BDT performs noticeably better than NN
even when using the same input features. 
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1. Introduction

The properties under CP symmetry of the Higgs boson are an important test for the Standard
Model (SM) of particle physics. The SM predicts the existence of one Higgs boson, and its
coupling to fermions and vector bosons are expected to be invariant under CP symmetry.
The presence of CP violation in the Higgs sector, if found, would provide a strong indication
for physical phenomena not predicted by the SM and be used to constrain theories beyond
the SM. The main goal  of  the project  is  to  uncover  the Higgs CP nature in  CMS using
machine learning (ML) techniques and compare our BDT model with the previously used NN
one.

Fig. 1: Left (Right): schematic depiction of a CP-odd (-even) H→𝜏𝜏 decay

Fig. 2: An example of a Feynman diagram for ttH production, with subsequent decay of the
Higgs boson to a pair of τ leptons

2. Methodology 

2.1. Input data

This project used hard scattering events recorded during proton-proton collisions at the LHC
by the CMS experiment.  I  used recorded and simulated events relative to 2018 detector
conditions  (HTT data).  The  targeted  decay  of  Higgs  is  the  decay  of  Higgs  into  two tau
leptons, one tau decaying into a muon and neutrinos and the other decaying into hadrons. I
defined  three  categories,  each  one collecting physical  processes  with  common  features.
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Initially, input features were investigated using three notable samples, each corresponding to
a different category of physical processes: 

1. VBF is a Higgs production mechanism 
2. DYJets and WJets are the two major backgrounds

2.2. Input features

I  initially  studied  the same input  features  used in the  published analysis.  Then,  I  look at
distributions  of  physical  quantities  to  investigate  their  potential  to  separate  signal  and
backgrounds. I looked at quantities such as kinematics of reconstructed leptons and jets like
transverse momentum (pT) and pseudorapidity (η), and more complex variables such as the
invariant  mass of  lepton  and jet  systems.  Fig.  3  shows clearly  that  di-tau  mass is  very
interesting  because  DYJets  and  VBF  peaks  are  at  different  values  while  Wjets  has  a
smoother distribution. 

Fig. 4: shows other variables which were tested for their potential of differentiating between
signal and backgrounds. Physical processes can also differ based on how their respective
features  are  correlated  with  each  other.  This  can  be  investigated  by  looking  at  2-D
distributions as shown in Fig. (5 and 6). Based on the investigated plots, I decided which
features I will add into the BDT model afterwards.

Fig. 3: Overlayed 1-D distribution for di-tau mass for the three different categories
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Fig. 4:  Top row: transverse momenta (left), impact parameter (IP) significance (center) and longitudinal IP
(right) of the muon. Bottom row: number of jets (left), invariant mass of the two leading jets (center), and

transverse mass of the muon and MET (right)

Fig. 5: overlayed 2-D distribution for transverse momentum of the muon and invariant mass of the visible
decay products of the two tau leptons for the three different categories
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Fig. 6: more overlayed 2-D distributions for various features

2.3. Architecture

2.3.1. Boosted decision trees (LightGBM) 

In  our  model,  I  used a Light  Gradient  Boosting  Machine (lightGBM) which is  a gradient
boosting framework that uses tree based learning algorithm. Below a diagram explains the
implementation of LightGBM and how it works. 

Fig. 7: At each step of the tree iteration, two new leaves are associated to a random existing one
which is at the end of an open branch. The process is repeated till a maximum lenght of the

branch, i.e. the max_depth parameter of the architecture, is reached.

2.3.2. Hyperparameter optimization

Hyperparameter  optimization  is  consists  in  choosing  a  set  of  parameters  for  the  BDT
architecture  in  order  to  maximize  its  performance.  In  our  model,  I  tuned  several
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Learning_ rate Max_ depth Lambda_l1

Feature_fraction_bynodeTrain_size

hybeparameters  as  shown  in  the  following  diagram  to  get  the  best  BDT  model.  The
performance of  the BDT was evaluated by looking at  the loss function for  the validation
dataset.  Several  values  were tested for  each hyperparameter,  the  one yielding  the best
results was kept when optimizing other parameters in the sequence shown in Fig.8.

Fig. 8: Hyperparameter optimization’s sequence

3. Results

3.1.  Feature importance

The two lists below show the input features used initially in our model as published analysis 
and the feature importance based on the BDT model after adding extra input features.

Fig. 9: Left: observable used for the training of the NN used in [Ref. 1] and for the hyperparameter
optimization. Right: feature ranking after adding additional features to the BDT training

The IP significance of the muon and the transverse mass of the hadronic tau and MET are 
ranked 4th and 5th respectively, meaning that their addition to the BDT was considered useful.
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3.2. Confusion matrices for the best model

Fig.10: shows the confusion matrices for the best model normalized by rows (efficiency 
matrix) or by columns (purity matrix). The diagonal elements are all above 0.6 showing that 
the BDT achieves a relatively good efficiency and purity for all categories.

Fig. 10: The confusion matrices for the best model 

3.3. Comparison with NN: H→𝜏𝜏→𝜏μ𝜏h signal strength

Results relative to the measurement of the Higgs CP properties have been obtained as a 
parametric fit of simualted signal to an Asimov dataset. Figure 11 shows how the expected 
limits for the inclusive Higgs production signal strength have improved by ~40% with the new 
ML algorithm. 

Fig. 11: Comparison with NN: H→𝜏𝜏→𝜏μ𝜏h signal strength
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3.4. CP-even vs CP-odd Higgs

As shown in Fig. 12, the significance for the exclusion of a pure CP-odd Higgs increases by
~37% with the new BDT model.

 

 

Fig. 12: CP-even vs CP-odd Higgs

Conclusions

Table 1: shows a comparison between previously used NN (Old NN), the BDT obtained by
simply optimizing the hyperparameters (BDT-best architecture)  and the one which inclused
extra input features  (BTD-best architecture + extra features).  The comparison is made in
terms of the significance for the identification of the H→ττ→τμτh  process and for the exclusion
of a pure CP-odd Higgs hypothesis.

Through the project, it’s been proven that H→𝜏𝜏 identification has improved a lot and this
means that BDT performs noticeably better than NN even when using the same features.
The performance was evaluated using the expected significance for the H→𝜏𝜏 process and
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for  the  exclusion  of  a  pure  CP-odd  hypothesis  estimated  on  an  Asimov  dataset.  The
noticeable  increase  in  significance  brought  by  adding  additional  input  feature  and  by
optimizing the hyperparameters indicates that there is still room for improvement. This  will
allow a more precise measurement of the Higgs CP nature and constrain additional sources
of baryon-asymmetry in the Universe. 

References

1. Cardini, A. (2021). Measurement of the CP properties of the Higgs boson in its decays to τ 
leptons with the CMS experiment [Doctoral Dissertation, Universität Hamburg]. Deutsches 
Elektronen-Synchrotron DESY. https://bib-pubdb1.desy.de/record/462769  

9


	Contents
	1. Introduction
	2. Methodology
	2.1. Input data
	2.2. Input features
	2.3. Architecture

	3. Results
	3.1. Feature importance
	3.2. Confusion matrices for the best model
	3.3. Comparison with NN: H→𝜏𝜏→𝜏μ𝜏h signal strength
	3.4. CP-even vs CP-odd Higgs
	Conclusions
	References



