
Interferometric Mirror Tracking System

DESY Summer Student Programme, 2021

Rodion Zaytsev
Moscow Institute of Physics and Technology, Russia

Supervisor

Dr. Mikhail Lyubomirskiy

September 9, 2021

Abstract

The project consisted in making a mirror tracking system based on interferometri-

cally measured positions of the total external re�ective mirror displacement. A piezo

actuator drives the mirror with a frequency of approximately 500 hertz. The optical

interferometer collects the positions with megahertz frame rate. The data is collected

while the mirror is being moved and analyzed afterward.

CONTENTS 2

Contents

1 Introduction 1

2 Main calculations 3

3 Experimental data 5

3.1 Interferometer data . 5
3.2 Data from the X-ray detector . 5
3.3 Program work�ow . 6

4 Conclusion 8

5 Appendix: program code 9

1 1 INTRODUCTION

1 Introduction

X-rays were discovered by Wilhelm Röntgen in 1895. He noticed that the radiation from
the Geisler tube penetrated some materials, such as wood, but not others, such as metal.
Taking a picture of his hand, he could see a shadow of his bones. The importance of
this discovery was quickly recognized, in particular because it opened new horizons for the
medical science. Apart from the absorption properties, it turned out that the di�raction
properties of the X-rays can be used to investigate the crystal structures and thus determine
the structure of the molecules. Nowadays X-rays are regularly used determine the structure
of proteins. The main source for the X-rays since 1970s is synchrotron radiation from the
storage rings, which are more brilliant then the early sources by an order of 1012 and has
boosted the innovation in the X-ray science signi�cantly. Recently X-ray lasers have been
introduced and are likely to be the next generation source of X-ray radiation, and will no
doubt bring new scienti�c discoveries. [1] Numerous techniques have been developed for X-
ray imaging. Computer axial tomography consists in measuring intensity distribution of an
object from di�erent angles. A.M. Cormack suggested a method to reconstruct the image
of an object from the intensity distributions [2]. Practically, the method commonly used
in medical tomography to collect the intensity distributions at di�erent angles is to �x the
object and rotate the source and the detector around it. There are other imaging methods

Figure 1: CT scanning scheme [1]

based on di�raction and refraction properties of the X-ray depending on the material. The
problem of taking the measurement from di�erent angles, however, is present in all the
di�erent techniques. Apart from the method described above when the detector and the
source are moved around the object, it is, of course also possible to move the object itself.
There are, however problems with these technique. They require moving a signi�cant mass
and are therefore inherently slow, besides which there are stability issues. These problems
can be solved by introducing a mirror in the way of the beam. It is much easier to move the
mirror, and it will provide the possibility to scan the object from di�erent angles quickly

1 INTRODUCTION 2

and precisely, as the mirror can be driven by a piezoelectronic actuator which allows for
rapid and high precision movements. In the next section the details of the proposed method
will be described.

3 2 MAIN CALCULATIONS

2 Main calculations

Our main goal is to be able to determine the angle at which an X-ray beam hitting the
mirror is re�ected. A possible way to do this is to set up an interferometer which will
measure the mirror displacement. In order to relate the measurement of the interferometer
to the angle of the re�ected beam, we have to calculate the position of the interferometer
relative to the axis of rotation. First, let us determine the connection between the angle of
re�ection and the angle of rotation of the mirror. Let ~n be the unit normal to the mirror.

Figure 2: Geometric diagram

Then if ~b is the incident beam, the re�ected beam ~b′ is given by

~b′ = ~b− 2(~b, ~n)~n (1)

If we measure all the angles in radians and use the small angle approximation, we have

|δ~b′| ≈ δϕ, |δ~n| ≈ δθ, h = d · δθ (2)

Here the relative error is of the order δθ2. Notice that due to geometry |δϕ| ≤ 2|δθ|, which
is why it makes sense to give an upper bound only in terms of δθ. We now relate relate
|δ~b′| and |δ~n|.

δ~b′ ≈ −2(~b, δ~n)~n− 2(~b, ~n)δ~n (3)

This equation has 2-nd order accuracy, so the relative error will be approximately δθ. In
the small angle approximation, δ~n ⊥ ~n, so taking the norm, we get with a relative accuracy
of order δθ

|δ~b′|2 ≈ 4(~b, δ~n)2 + 4(~b, ~n)2|δ~n|2 (4)

2 MAIN CALCULATIONS 4

It is clear that the right side of equation (4) quadratically depends on δθ, whereas the left
side quadratically depends on h. We thus have a linear dependence

C =
δϕ

h

with relative accuracy of order δθ. Having calculated this constant enables us to determine
the angle of the beam from the interferometer data

δϕ = Ch

The angle range in the experiment is δθ ∼ 10−3 radians, so the relative error will not
exceed 0.1%, which, is su�cient for this experiment (because the experimental error when
measuring the angle δϕ will be of the order 1% due to �nite pixel size of the X-ray detector)

5 3 EXPERIMENTAL DATA

3 Experimental data

In this section an example of experimental data will be given and the program will be
applied to process it. The program code is provided in the appendix.

3.1 Interferometer data

The following data was collected by the interferometer while the mirror was driven by a
piezo actuator with a 100mV voltage amplitude sinusoidal signal. Python code was used

Figure 3: Data from the interferometer

to process the data and determine intervals according to the amplitude and frequency.
The amplitude can be calculated as the maximum over an interval. Once the amplitude is
determined, it is possible to calculate the frequency by counting the number of nodes and
dividing the time interval by that number.

3.2 Data from the X-ray detector

The X-ray detector consists of 75µm pixels which measure the intensity of the falling beam.
A sample of data is given below

3 EXPERIMENTAL DATA 6

Figure 4: X-ray detector data

A python script calculates the position of the center of the beam. Technically, it
calculates the center of mass (here intensity plays the role of mass).

3.3 Program work�ow

The diagram below schematically illustrates the work�ow of the program.

7 3 EXPERIMENTAL DATA

Figure 5: Program work�ow diagram

Firstly the data from the interferometer and the X-ray detector is supplied to calculate the
coe�cient. Here is a sample output of the program along with the input data.

Figure 6: Calculating the coe�cient

Now that the coe�cient is calculated, the program can be given the displacement mea-
surement from the interferometer to calculate the coordinates of the beam.

Figure 7: Calculating the coordinates

4 CONCLUSION 8

4 Conclusion

In this project the problem of controlling the angle of the falling X-ray beam onto the
sample quickly and precisely was considered. A solution which consisted in introducing
a mirror into the beam's way was proposed. Experimental data was analysed and the
proposed solution was implemented as a script which processes the experimental data and
provides the solution.

Acknowledgements

I want to thank the DESY Summer Student Programme organization for giving me the
opportunity to work at one of the world's leading research centers. I would like to thank
my supervisor Dr. Mikhail Lyubomirskiy for his enthusiastic and inspiring guidance in
the project, for helping me master di�cult topics and answering with great patience all
the questions that arose throughout the research process. I would also like to thank Dr.
Christian Schroer for the opportunity to make a presentation of this work in his seminar.

9 5 APPENDIX: PROGRAM CODE

5 Appendix: program code

In [41]:
libraries needed to extract data and plot it

import h5py

import hdf5plugin

import matplotlib.pyplot as plt

import numpy as np

from PIL import Image

mask = np.array(Image.open('mask.tif')) # mask used to remove shadows

file = h5py.File('eiger4m_01/scan_00032_master.h5','r')

x_pixel_size = file['entry']['instrument']['detector']['x_pixel_size']

y_pixel_size = file['entry']['instrument']['detector']['y_pixel_size']

In [42]:
function that returns the coordinate of the beam in pixel units

def beam_coordinates(data: np.array)->float:

 c = np.zeros(2) # center of mass

 N = 0

 for depth in range(data.shape[0]):

 for i in range(data.shape[1]):

 for j in range(data.shape[2]):

 if data[depth, i,j] * mask[i,j] != 0:

 c[0] += i * data[depth,i,j]

 c[1] += j * data[depth,i,j]

 N += data[depth, i,j]

 return c/N

#sample = np.array(dset1)

#print(beam_coordinates(sample))

function that calculates the solid angle based on the distance to the X-ray detector and two points there

def solid_angle(p1, p2, L):

 return (p2 - p1)/L

In [43]:
function that returns the coefficients such that solid angle = c*h

def coeffs(angle, height):

 return angle / height

function that calculates the coordinates on a screen L meters away, where c is the coefficient

def get_coordinates(c, h, L):

 return L*h*c

Point 1 (m): [0.10249992 0.05083273]

Point 2 (m): [0.1024572 0.05082699]

angle (rad): [-3.88347571e-06 -5.21507817e-07]

laser displacement (m): 1.724622e-08

distance to the detector (m): 11

coefficients (rad/m): [-225.1783702 -30.23896351]

laser displacement (m): 4.156207e-08

distance to screen (m): 0.5

coordinates of the beam (m): [-4.67943959e-06 -6.28396959e-07]

In [64]: laser = np.array(h5py.File('data/test_000010.h5')['entry']['instrument']['detector']['data']['Axis2']['positio

h = (laser[1000] - laser[0])*1e-14

L = 11

In [65]:
p1 = beam_coordinates(np.array(file['entry']['data']['data_000001'])[0:1,:,:])

p2 = beam_coordinates(np.array(file['entry']['data']['data_000023']))

p1 *= x_pixel_size

p2 *= y_pixel_size

angle = solid_angle(p1, p2, 11)

c = coeffs(angle, h)

In [70]:
print('Point 1 (m):', p1)

print('Point 2 (m):', p2)

print('angle (rad):', angle)

print('laser displacement (m):', h)

print('distance to the detector (m):', L)

print('coefficients (rad/m):', c)

In [72]:
dh = (laser[3000] - laser[0])*1e-14

d = 0.5

print('laser displacement (m):', dh)

print('distance to screen (m):', d)

print('coordinates of the beam (m):', get_coordinates(c, dh, d))

We are going to plot some measurements by the interferometer when different signals are supplied to it.

In [1]:
libraries needed to extract data and plot it

import h5py

import matplotlib.pyplot as plt

import numpy as np

In [2]:
the following code splits the measurements by amplitude and plots it

period of oscillation - frequency is 10 Hz

T = 1/10

def amplitude(a, start, end):

 return np.max(a[start:end]) - np.min(a[start:end])

def batch_size(sampling_frequency, frequency):

 return int(sampling_frequency / frequency)+1

def next_batch(a, start, bs, eps=0.5):

 A = amplitude(a, start, start+bs)

 start = start + bs

 while start < len(a) and abs(amplitude(a, start, start+bs)/A - 1) < eps:

 A = amplitude(a, start, start+bs)

 start += bs

 return start

def chunk(a, bs):

 chunks = []

 start = 0

 while start < len(a):

 end = next_batch(a, start, bs)

 chunks.append(a[start:end])

 start = end

 return chunks

def normalise(chunk):

 mean = np.mean(chunk)

 for i in range(len(chunk)):

 chunk[i] -= mean

calculates the frequency of a normalised chunk of data by counting the zeros

def frequency(c, sampling_frequency):

 oscillations = 0

 for i in range(len(c) - 1):

 if c[i] * c[i+1] < 0:

 oscillations += 1

 return oscillations * sampling_frequency / len(c)

def is_max(a, t, r):

 if a[t] == np.max(a[max(t-r,0):t+r]):

 return True

 return False

def is_min(a, t, r):

 if a[t] == np.min(a[max(t-r, 0):t+r]):

 return True

 return False

def next_extremum(a, start, r=2):

 while (start < len(a)) and(not is_max(a, start, r)) and (not is_min(a, start, r)):

 start += 1

 return start

def average_amplitude(a):

 start = 0

 end=len(a)

 l = r = next_extremum(a, start) # current min and max indices

 r = next_extremum(a,r+1)

 A = 0

 cnt = 0

 while r < end - 1:

 A += abs(a[r] - a[l])

 cnt += 1

 l = r

 r = next_extremum(a, r+1)

 A /= cnt

 # calculate deviation

 s = 0

 l = r = next_extremum(a, start)

 r = next_extremum(a,r)

 while r < end:

 A_cur = abs(a[r] - a[l])

 s += (A_cur - A)**2

 l = r

 r = next_extremum(a, r+1)

 return A, np.sqrt(s/cnt)

sampling frequency: 781.25

<ErrorbarContainer object of 3 artists>

plots np.array of data

def plot(a):

 t = np.linspace(0, len(a)/sampling_frequency, len(a))

 plt.figure(figsize=(15,4))

 plt.title('Interferometer data')

 plt.xlabel('time (s)')

 plt.ylabel('displacement (nm)')

 plt.ylim(-100,100)

 ax = plt.gca()

 ax.autoscale_view()

 plt.plot(t, a ,'-', color='red',label="absolute", linewidth=1)

 plt.legend()

 plt.show()

In [3]:
file = h5py.File('test_000010.h5')

sampling_frequency = file['entry']['instrument']['detector']['sampling_frequency'][0]

print('sampling frequency:', sampling_frequency)

data = file['entry']['instrument']['detector']

a = np.array(data['data']['Axis2']['position_absolute'])

normalise(a)

f = frequency(a, sampling_frequency)

#r = data['data']['Axis2']['position_relative']

bs = batch_size(sampling_frequency, f)

chunks = chunk(a, 1000)

good = chunks[1::2]

c0 = good[0]

A0, s0 = average_amplitude(c0[len(c0)//4 : -len(c0)//4])

A = []

s = []

for c in good:

 A_c, s_c = average_amplitude(c[len(c)//4 : -len(c)//4])

 A.append(A_c/A0)

 s.append(s_c/s0)

In [10]:
plt.figure(figsize=(15,4))

plt.xlabel('trial index')

plt.ylabel('Amplitude relative to first trial')

plt.errorbar(list(range(1, len(A)+1)), A, s, color='black', linestyle='None', marker='o')

Out[10]:

sampling frequency: 781.25

frequency: 43.32119360902256

In [16]:
the second measurement

file = h5py.File('test_000010.h5')

sampling_frequency = file['entry']['instrument']['detector']['sampling_frequency'][0]

print('sampling frequency:', sampling_frequency)

data = file['entry']['instrument']['detector']

a = np.array(data['data']['Axis2']['position_absolute'])

normalise(a)

f = frequency(a, sampling_frequency)

bs = batch_size(sampling_frequency, f)

chunks = chunk(np.array(a), 10*bs)

for c in chunks:

 normalise(c)

 print("frequency:", frequency(c, sampling_frequency))

 plot(c*1e-5)

frequency: 48.7546992481203

frequency: 20.46358629130967

17 REFERENCES

References

[1] Jens Als-Nielsen, Des McMorrow, Elements of Modern X-ray Physics, Second Edition,
(John Wiley and Sons, 2011)

[2] A. M. Cormack Representation of a Function by Its Line Integrals, with Some Radio-

logical Applications, Journal of Applied Physics 34, 2772 (1963)

	Introduction
	Main calculations
	Experimental data
	Interferometer data
	Data from the X-ray detector
	Program workflow

	Conclusion
	Appendix: program code

