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Räıssa Costa Barroso

at the

Deutsches Elektronen-Synchrotron (DESY)
Platanenallee 6
15738 Zeuthen

Germany

under the supervision of

Dr. Jason J. Watson

August 2021



Contents

1 Introduction 2

2 Motivation and Background 4
2.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 The DBSCAN Algorithm 6
3.1 Concepts and Description . . . . . . . . . . . . . . . . . . . . 6
3.2 Other Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Method and Results 9
4.1 Parameter Sampling . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1 Defining Optimal Parameters . . . . . . . . . . . . . . 9
4.1.2 Finding Optimal Parameters . . . . . . . . . . . . . . . 10

4.2 Knee Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 Sampling vs. Knee Curve . . . . . . . . . . . . . . . . 14
4.3.2 Proton vs. Gamma showers . . . . . . . . . . . . . . . 14

1



1 Introduction

Cherenkov Telescope Array

The Cherenkov Telescope Array (CTA) is an ongoing project which aims
at detecting high energy gamma rays coming from space and reaching the
Earth’s atmosphere. In fact, high energy gamma rays interact with the
Earth’s atmosphere, producing particle showers. These particles have a speed
greater than the speed of light in the air, leading to the emission of Cherenkov
light. CTA’s telescopes are specifically designed to detect such events. In-
deed, CTA is composed of different sized telescopes covering a wide energy
range: large-sized telescopes (LSTs) with a low energy sensitivity between
20 and 150 GeV, medium-sized telescopes (MSTs) covering energies going
from about 150 GeV to 5 TeV and small-sized telescopes (SSTs) with a high
energy sensitivity between a few TeV and 300 TeV [1]. The telescopes will
be located both in the Southern Hemisphere in Chile, and in the Northern
Hemisphere in La Palma, totalling 118 telescopes!

It is an impressive enterprise, not only from a technical point of view.
CTA will address multiple open questions in astrophysics and broadly speak-
ing in high energy physics. Gamma rays are emitted by a number of different
sources such as black holes, pulsars and binary systems, to cite a few [1]. The
precise study of the gamma rays emitted by these objects, provides us with
crucial information for better understanding the physical processes at play.

Project

Now, it goes without saying that there is a long way between the detection
of Cherenkov shower and the extraction of relevant information. Precisely,
the process of going from raw data to the reconstruction of important physical
quantities of the progenitor astrophysical particle (e.g. energy, direction)
is what is called a pipeline. The goal of this project is to explore a new
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1. INTRODUCTION

pipeline, using a different representation of the data in terms of photon lists
and in particular to investigate the possible application of machine learning
algorithms to the analysis of the data.

Organisation

This report is organised in the following way. Firstly, we introduce the
general elements necessary to put this project into context. We then move on
to general considerations about DBSCAN, the algorithm we used. Finally,
we describe the methods we devised to determine the optimal DBSCAN
parameters to be used when studying proton and gamma showers.
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2 Motivation and Background

2.1 The Data

Throughout this project we use simulated data. In order to produce this
data, we use the sstcam-simulation Python package, which simulates the SST
camera definition and allows to asses the performance of the camera. In our
case, we extract a photon list from the simulation. It is important to stress
here that up to this point, our data consists just of Cherenkov photons. Then
by assuming a Poisson distribution with an average which corresponds to the
photon arrival rate per pixel, we add night sky background (NSB) photons.

In Fig.2.1, the data is represented in three-dimensional space. The po-
sition of a photon in the x-y plane corresponds to the position at which it
reached the camera (which is flat). The position of a photon in the time axis
corresponds to the time at which it reaches the camera.

2.2 Pipelines

There is a long way from the detection of a Cherenkov showers to the
extraction of interesting quantities for the study of the physical processes at
the origin of the emission of high energy gamma rays. In fact, after being
detected, a Cherenkov showers are shaped by the electronics of the system,
digitised and then stored as waveforms of 128 ns long with 1 ns sampling.
In the traditional pipeline, from these raw waveforms one typically generates
images of these Cherenkov showers. Then from the analysis of these images
one reconstructs the main properties (such as energy, direction, type) of the
progenitor astrophysical particle.

In the pipeline we investigate, however, we do not go through the process
of generating two-dimensional images of charge and arrival time. Instead, we
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2. MOTIVATION 2.2. PIPELINES

Figure 2.1: Proton cosmic rays Cherenkov shower (blue) and NSB (red) simula-
tion.

use photon lists. Photon lists are a different representation of the showers.
In fact, they are generated by the application of algorithms such as the Non-
Negative Least Squares (NNLS) algorithm to the traditional waveforms. This
means we only keep potentially useful events, so we keep all their information.
Since a large amount of useless information is discarded from the start, we
can afford with photon lists to keep more detailed information, in particular
concerning time. Moreover, this different representation is well suited for
the application of machine learning algorithms for discriminating between
different showers and noise.
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3 The DBSCAN Algorithm

Machine learning algorithms have proved to be efficient solutions when
it comes to data analysis. Some examples are applications to classification,
regression and clustering problems. In our particular case, we are looking
for a clustering algorithm. In fact, we want to discriminate between photons
related to the Cherenkov shower, the physical event we are interested in, and
photons associated to the background. As showed in Fig.2.1, a Cherenkov
shower corresponds to a higher density of photons, or in other words to
a cluster of photons. This observation motivates the use of the DBSCAN
algorithm [2] which is available in the scikit-learn package [3], a module
which provides a number of machine learning tools in Python.

3.1 Concepts and Description

The core idea of the DBSCAN algorithm is to work with a carefully
defined density based notion of cluster. It is somewhat intuitive to think of
clusters in terms of density: if there are many particles localised in a region
of space (and few others spread out) we can easily group them together.

In order to understand the algorithm, we have to formalise this intuition.
In particular, we need the notions of:

• Neighbourhood : a neighbourhood Neps(p) is the set of points within a
radius eps of point p.

• Directly density-reachable: a point p is directly reachable from a point
q if p is in the neighbourhood of q, that is p ∈ Neps(q), and the Neps(q)
has at least a number of min samples elements.

• Density-reachable: two points p, q are density-reachable if one can reach
p from q with a chain of directly density-reachable points.
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3. THE DBSCAN ALGORITHM 3.1. CONCEPTS AND DESCRIPTION

• Density-connected : two points p and q are said to be density-connected
if there exists a point o such that o is density-reachable from p and from
q with respect to eps and min samples.

The rigorous definitions can be found in [2]. Let us stress here that all these
notions depend on one or both of the parameters eps and min samples.
Thus these are crucial parameters for DBSCAN. To be precise, when we
write (directly) density-reachable or density-connected in what follows, we
mean with respect to some eps and min samples.

The above notions lead us to the definitions of cluster and noise used by
DBSCAN:

• Cluster : If D is a database, then the cluster C with respect to eps
and min samples is a subset of D such that: (i) if a point p in C is
density-reachable from another point q, then q also belongs to C; (ii)
all pairs of points in C are density-connected.

• Noise: noise is the set of points which do not belong to any cluster in
the database.

With these definitions in hands, we can already get an idea of how DBSCAN
will tackle the problem of finding clusters. Starting from a point p, DBSCAN
will look for density-reachable points from p. This step will lead to the
identification of a cluster, provided that p is indeed part of a cluster. If this
is the case, then DBSCAN will move on to another point outside of the first
cluster. If it is not the case, then DBSCAN will explore any other point of
the database.

A final remark on DBSCAN concerns its classification as a machine learn-
ing algorithm. In fact, the general representation we have of machine learning
is usually restrained to supervised learning. In this case, we think of machine
learning as being a black box which after comparing its own results to ex-
pected outputs coming from a large database understands how to return
desired answers. There is, however, another type of learning, so-called unsu-
pervised learning. DBSCAN falls into this category since it creates its own
representation of the data it is provided with. We do not give any information
about the input and the algorithm figures out its underlying structure.
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3. THE DBSCAN ALGORITHM 3.2. OTHER ALGORITHMS

3.2 Other Algorithms

It is worth mentioning where DBSCAN stands in the landscape of avail-
able algorithms. One of the advantages of DBSCAN is that no prior infor-
mation on the data is required. In particular, as opposed to another popular
clustering algorithm, K-Means, the number of clusters does not have to be
known in advance and clusters can have different sizes. Nonetheless, there
is no obvious way of choosing the eps and min samples parameters which
do depend on the input. Finally, in terms of complexity, DBSCAN scales as
O(n log n) [2].

8



4 Method and Results

As briefly discussed in the previous section, the most important parame-
ters in DBSCAN are the paramaters eps and min samples because a cluster
is defined with respect to eps and min samples. Therefore, if we want the
algorithm to properly distinguish between noise and Cherenkov showers we
have to correctly tune these parameters. We have tried two approaches for
finding optimal parameters, which we describe in this section.

4.1 Parameter Sampling

4.1.1 Defining Optimal Parameters

In order to find the optimal parameters eps and min samples which
best identify the shower from the noise, we have to define a criterion which
quantifies what we mean by a good discrimination between signal and noise.
There is no straightforward way to decide which criterion to use and this
choice ultimately depends on the information we want to extract from the
data.

The very first criteria we tried consisted in comparing the output of the
algorithm against the known nature of a given signal. Since the data we
use comes from simulations, we know if a photon comes from the simulation
of a Cherenkov shower or from the NSB. So we can compute for example
the number of true positives, that is the number of photons which were
identified as Cherenkov photons by the algorithm and did indeed come from
the simulation of a Cherenkov shower. Similarly, we can define the number of
false positives, which were deemed positive but were actually NSB photons
in the simulation, and so on. We encountered two main problems with this
approach:
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4. METHOD AND RESULTS 4.1. PARAMETER SAMPLING

• We want to be able to chose a set of parameters which does not mis-
takenly consider some NSB photons to be Cherenkov photons. This
information is encapsulated in all four criteria: number of true posi-
tives, true negatives, false positives and false negatives. However, it
is not clear how to combine the information provided by the different
criteria.

• These criteria are not sensitive to the brightness of the shower. For
instance, a dimmer shower might get a lower score even if more pho-
tons were correctly identified. So we cannot use this scoring system
to compare the performance of the algorithm when applied to showers
with different brightness.

Hence, a better scoring system would consist in a single number which
carries all the information and takes brightness into account. A statistical
tool which corresponds to what we are looking for is the root mean squared.
So we define:

RMSE =

√∑
i

(bi − βi)2
N

, (4.1.1)

where the indices i go through all the photons in the photon array. We define
bi to be equal to 1 if the photon i was considered to be a Cherenkov photon
by DBSCAN and 0 otherwise. Similarly βi is equal to 1 if this photon was
originally a Cherenkov photon in the simulation and 0 otherwise. N is the
brightness of the shower, that is the total number of incoming photons. With
this formula, we would expect the RMSE value to be minimised when there
is a good agreement between the true nature of the photon in the simulation
and DBSCAN. Whenever a photon is misidentified (as a Cherenkov of NSB
photon) a price of 1/N has to be paid. Therefore, the problem of finding an
optimal parameter now translates into finding the set of parameters which
minimise the RMSE value.

4.1.2 Finding Optimal Parameters

Now that we have a scoring system to measure the performance of the
algorithm we can try different set of parameters and find the best eps and
min samples values. A first approach is to brute force the problem and
try many sets of parameters. We essentially create a matrix whose entries
are the RMSE values for a set (eps,min samples) of parameter values. We
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represent this matrix in the form of a two-dimensional plot, where each color
represents an RMSE value. We generate such plots for one thousand showers
with different brightness and then average out the results between showers
within some range. We follow this procedure for both gamma-ray and proton
cosmic-ray showers (see Fig.4.1 and Fig.4.2). Note that the values of eps and
min samples samples are somewhat arbitrary1.

Based on Fig.4.1, we notice that even if the minimum RMSE value does
not correspond to exactly the same set of parameters at different ener-
gies, optimal eps and min samples do have similar values. This means
one could choose a global set of parameters and apply it to showers with
different brightness. This solution would not be optimal in all cases, but
would not be far from optimal. For instance, one could choose the set
(eps = 0.29,min samples = 10). Similar observations apply to Fig.4.2.
In addition, it worth noting that from Fig.4.1 and Fig.4.2 it is not clear if
there is a significant difference between optimal parameters for gamma-ray
or proton cosmic ray showers.

4.2 Knee Curve

Another approach, somewhat specific to DBCAN, consists in generating
a knee curve by computing the 4-distance,the distance of a point to its fourth
nearest neighbour, for all points in the database. Then ordering points in
decreasing order of 4-distance, one can generate a plot and then identify the
knee of the curve (see Fig.4.3). Following this heuristic approach described
in [2], the optimal eps and min samples values correspond to the y and
x-coordinate of the knee point respectively.

The major shortcoming of this method is the fact that the knee point has
to be identified by eye, which makes this approach hard to automatise. In
fact, the standard way of formalizing the idea of a knee point is to phrase the
problem in terms of the curvature. In mathematics, the curvature of some
real function f is defined as:

κ(x) =
f ′′(x)

[1 + f ′(x)2]3/2
. (4.2.1)

1In reality, we can get some intuition from the definition of these parameters. In
practice, we have started from a larger sampling space and then focused it in the area
which carried more interesting information.
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4. METHOD AND RESULTS 4.2. KNEE CURVE

Figure 4.1: Two-dimensional plot of the RMSE values (colormap), as a function
of the eps and min samples DBSCAN parameters for proton cosmic-ray showers.
Each plot corresponds to the average of the results obtained for multiple showers
within a different range of brightness (in number of photons).
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4. METHOD AND RESULTS 4.2. KNEE CURVE

Figure 4.2: Two-dimensional plot of the RMSE values (colormap), as a function
of the eps and min samples DBSCAN parameters for gamma-ray showers. Each
plot corresponds to the average of the results obtained for multiple showers within
a different range of brightness (in number of photons).
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One would then claim that a knee point corresponds to the point of maximum
curvature. So a knee point would be where the derivative of the curvature
cancels out

κ′(x) =
f ′′′(x)[1 + f ′(x)2]3/2 − 3f ′′(x)2f ′(x)[1 + f ′(x)2]1/2

[1 + f ′(x)2]3
= 0, (4.2.2)

which amounts to solving the simplified equation:

f ′′′(x)[1 + f ′(x)2]− 3f ′′(x)2f ′(x) = 0. (4.2.3)

Unfortunately, the curves are well fitted by a rational function,

f(x) =
a

x+ b
+ c, with a, b, c fit paramaters, (4.2.4)

which means this approach fails and we cannot determine the precise location
of the knee of the curve by solving Eq.(4.2.3).

4.3 Comparisons

4.3.1 Sampling vs. Knee Curve

The first comparison we want to make is between the two methods de-
scribed above. In order to check their compatibility, we add the point cor-
responding to optimal parameters found with the knee curve method to the
two-dimensional plot (see Fig.4.4).

If the two sets were to be compatible, the additional point corresponding
to the parameters found with the knee curve approach, should be in a re-
gion where the RMSE is minimised. This is, however, not the case. In fact,
the RMSE formula takes the NSB data into account, providing a more reli-
able scoring system for our specific database. As opposed to the knee curve
method, which relies on the information available to DBSCAN. Therefore,
we prefer the more reserved sampling optimum values over the knee curve
optimum values. In addition, the knee curve approach has the inconvenient
of being hard to automatise.

4.3.2 Proton vs. Gamma showers

Another point we want to further investigate is the difference between pro-
ton cosmic ray showers and gamma ray showers’ optimal eps andmin samples
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Figure 4.3: Knee plot for proton cosmic ray showers. Each curve corresponds to
the accumulated data from many showers within the same brightness range. The
dashed lines correspond to a fit by a rational function Eq.(4.2.4). In black are the
knee points for proton cosmic ray showers.

15



4. METHOD AND RESULTS 4.3. COMPARISONS

Figure 4.4: Two-dimensional plot of the RMSE values (colormap), as a function
of the eps and min samples DBSCAN parameters for proton cosmic-ray showers.
Each plot corresponds to the average of the results obtained for multiple showers
within a different range of brightness (in number of photons). The black point
corresponds to the optimal eps and min samples values found with the knee curve
method.
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Figure 4.5: Knee plot for gamma ray showers. Each curve corresponds to the ac-
cumulated data from many showers within the same brightness range. The dashed
lines correspond to a fit by a rational function Eq.(4.2.4). In black are the knee
points for proton cosmic ray showers.

parameters. We compare the results yielded by both approaches, sampling
and knee curve, for the two types of showers.

In Fig.4.5, we see the knee plot obtained for gamma showers. The shape
of the curves is very similar to the ones obtained with proton showers but
knees have different positions. This is to be expected since gamma showers
should be less spread out than proton showers.

We can make similar observations by comparing the two-dimensional
RMSE plots of both proton and gamma ray showers. A clear distinction
could not be made by simply looking at Fig.4.1 and Fig.4.2, so we com-
pute instead the ratio between the proton and gamma ray RMSE values as
a function of eps and min samples. These plots are shown in Fig.4.6. We
see the same trend as in Fig.4.5: for the most part of the parameter space,
the ratio between RMSE values of proton and gamma ray showers is close
to one, which means they are compatible. However, it significantly diverges
from one in the minimal regions, which is compatible with Fig.4.5.
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Figure 4.6: Two-dimensional plot of the ratio between the RMSE values for proton
and gamma ray showers (colormap), as a function of the eps and min samples
DBSCAN parameters. Each plot corresponds to the average of the results obtained
for multiple showers within a different range of brightness (in number of photons).
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